Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
September 2, 2011--------News Archive

'Gene Overdose' Causes Extreme Thinness
Scientists have discovered a genetic cause of extreme thinness for the first time.

Genetics Meets Metabolomics
A closer look at each individual's metabolites might lead to a better estimation for that individual's risk for developing complex common diseases.

September 1, 2011--------News Archive

Parents’ Stress Leaves Marks on Children’s Genes
Epigenetics changes the expression of genes, and can induce long lasting changes in our children when they are exposed our to stress.

Gene Defect Linked to Disfiguring Disorder
The faulty gene responsible for Proteus syndrome, a rare disorder of uncontrolled growth of certain body tissues and organs, has been identified

August 31, 2011--------News Archive

Mom's Morning Sickness May Affect Infant Brain
Extreme morning sickness could lead to lifelong emotional, behavioral disorders in kids.

Stanford Invents Sutureless Joining of Blood Vessels
Sutures are difficult to use on blood vessels less than 1 mm wide. Now, Stanford University has a glue which works on extremely slim blood vessels 0.2 mm wide.

August 30, 2011--------News Archive

Mouse Model Brings New Ideas on Lafora Disease
Researchers at IRB Barcelona have demonstrated a link between abnormal sugar accumulation and the neuronal degeneration characteristic of Lafora disease.

Bilingual Babies' Display Early Brain Differentiation
Babies and children are whizzes at learning a second language, but that ability begins to fade as early as their first birthday.

August 29, 2011--------News Archive

Non Coding RNAs Direct Embryonic Development
Embryonic stem cells can either differentiate into cells of a specific lineage such as blood cells or neurons, or they can stay in a pluripotent state. Depending on RNAs.

Degrading One Protein Allows Cell to Divide
Found, a crucial element controlling segregation of genetic material from parent to daughter cells. Regulating CenH3 protein ensures correct cell division in Drosophila.

Going With the Flow
The egg develops through two asymmetric divisions, separating into daughter cells. However, microtubules don't pull apart the centromeres, just with the flow of actin.

A Light Answer to the Heavy Question of Cell Growth
A technique offers insight into the much-debated problem of whether cells grow at a constant rate or exponentially.

WHO Child Growth Charts


Baby wearing an EEG cap that measures brain activity. Credit: University of Texas

Researchers at the University of Washington's Institute for Learning & Brain Sciences are investigating the brain mechanisms that contribute to infants' prowess at learning languages, with the hope that the findings could boost bilingualism in adults, too.

In a new study, the researchers report that the brains of babies raised in bilingual households show a longer period of being flexible to different languages, especially if they hear a lot of language at home. The researchers also show that the relative amount of each language – English and Spanish – babies were exposed to affected their vocabulary as toddlers.

The study, published online Aug. 17 in Journal of Phonetics, is the first to measure brain activity throughout infancy and relate it to language exposure and speaking ability.

"The bilingual brain is fascinating because it reflects humans' abilities for flexible thinking – bilingual babies learn that objects and events in the world have two names, and flexibly switch between these labels, giving the brain lots of good exercise," said Patricia Kuhl, co-author of the study and co-director of the UW's Institute for Learning & Brain Sciences.

Kuhl's previous studies show that between 8 and 10 months of age, monolingual babies become increasingly able to distinguish speech sounds of their native language, while at the same time their ability to distinguish sounds from a foreign language declines. For instance, between 8 and 10 months of age babies exposed to English become better at detecting the difference between "r" and "l" sounds, which are prevalent in the English language. This is the same age when Japanese babies, who are not exposed to as many "r" and "l" sounds, decline in their ability to detect them.

"The infant brain tunes itself to the sounds of the language during this sensitive period in development, and we're trying to figure out exactly how that happens," said Kuhl, who's also a UW professor of speech and hearing sciences. "But almost nothing is known about how bilingual babies do this for two languages. Knowing how experience sculpts the brain will tell us something that goes way beyond language development."

In the current study, babies from monolingual (English or Spanish) and bilingual (English and Spanish) households wore caps fitted with electrodes to measure brain activity with an electroencephalogram, or EEG, a device that records the flow of energy in the brain. Babies heard background speech sounds in one language, and then a contrasting sound in the other language occurred occasionally.

For example, a sound that is used in both Spanish and English served as the background sound and then a Spanish "da" and an English "ta" each randomly occurred 10 percent of the time as contrasting sounds. If the brain can detect the contrasting sound, there is a signature pattern called the mismatch response that can be detected with the EEG.

Monolingual babies at 6-9 months of age showed the mismatch response for both the Spanish and English contrasting sounds, indicating that they noticed the change in both languages. But at 10-12 months of age, monolingual babies only responded to the English contrasting sound.

Bilingual babies showed a different pattern. At 6-9 months, bilinguals did not show the mismatch response, but at 10-12 months they showed the mismatch for both sounds.

This suggests that the bilingual brain remains flexible to languages for a longer period of time, possibly because bilingual infants are exposed to a greater variety of speech sounds at home.

This difference in development suggests that the bilingual babies "may have a different timetable for neurally committing to a language" compared with monolingual babies, said Adrian Garcia-Sierra, lead author and a postdoctoral researcher at UW's Institute for Learning & Brain Sciences.

"When the brain is exposed to two languages rather than only one, the most adaptive response is to stay open longer before showing the perceptual narrowing that monolingual infants typically show at the end of the first year of life," Garcia-Sierra said.

To see if those brain responses at 10-12 months related to later speaking skills, the researchers followed up with the parents when the babies were about 15 months old to see how many Spanish and English words the children knew. They found that early brain responses to language could predict infants' word learning ability. That is, the size of the bilingual children's vocabulary was associated with the strength of their brain responses in discriminating languages at 10-12 months of age.

Early exposure to language also made a difference: Bilingual babies exposed to more English at home, including from their parents, other relatives and family friends, subsequently produced more words in English. The pattern held true for Spanish.

The researchers say the best way for children to learn a second language is through social interactions and daily exposure to the language.

"Learning a second language is like learning a sport," said Garcia-Sierra, who is raising his two young children as bilingual. "The more you play the better you get."

Co-authors are Maritza Rivera-Gaxiola, formerly a UW research scientist; Cherie Percaccio, a postdoctoral researcher and Lindsay Klarman, a research technician at the UW Institute for Learning & Brain Sciences; Barbara Conboy, a speech-language pathologist at the University of Redlands; and Harriett Romo, director, and Sophia Ortiz, assistant director, of the Child & Adolescent Policy Research Center at the University of Texas at San Antonio.

The National Science Foundation Science of Learning Program grant to the UW's LIFE Center, a multi-institutional program, funded the study.