Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
September 9, 2011--------News Archive

Pregnancy Diet Influences Baby's Allergies
A possible link between what a mother eats during pregnancy and the risk of her child developing allergies has been identified.

When Do Infants Gain the Capacity for Pain?
The evidence suggests that developing brain networks become mature enough to identify pain as distinct from touch fairly late in development.

Early Motor Skill Training Jump Starts Infants
Study indicates infants at risk for autism could benefit from motor training.

September 8, 2011--------News Archive

Clue Found to Cause of Childhood Hydrocephalus
An excess of a natural molecule can bring about the devastating ‘water on the brain’ condition in mice and blocking its action can prevent the effect.

Sleep Controls Survival of "Smell" Neurons in Adults
When it comes to neurons that make up the olfactory system, it seems that sleep eliminates some smells. Perhaps sleepless parents are preserving intense smells!

Improving Treatment of Craniosynostosis
Craniosynostosis is a condition that causes the bone plates in the skull to fuse too soon.

September 7, 2011--------News Archive

In Socially Engaged Mice, White Fat Turns to Brown
Given an engaging place to live with greater opportunities for social stimulation, some energy-storing white fat is transformed to energy-burning brown fat.

Lifetime 'Dose' of Excess Weight Linked to Diabetes
Degree and duration of obesity in adolescents and young adults are important for type 2 diabetes risk, especially for Hispanics and blacks.

In Socially Engaged Mice, White Fat Turns to Brown
Given an engaging place to live with greater opportunities for social stimulation, some energy-storing white fat is transformed to energy-burning brown fat.

September 6, 2011--------News Archive

New Map of Where Tastes are Coded in the Brain
How Does the Brain Know What the Tongue Knows?

Phthalates and Decrease In Mental-Motor Growth
Phthalates are endocrine-disrupting chemicals widely present in the environment, and are linked to increased behavioral problems by age 3.

Missing Genes Separate Coach Potato from Action
You may think your lack of resolve to get off the couch to exercise is because you're lazy, but research has discovered it may be you are missing key genes.

September 5, 2011--------News Archive

Found, Gene Defect Predisposing You to Leukemia
Those at risk because of family history may soon obtain tests to detect the genetic error before symptoms emerge.

New Blood Sugar Control for Diabetes
Study finds inflammation may be part of the solution, not the problem.

WHO Child Growth Charts

Scientists at The Scripps Research Institute have found what may be a major cause of congenital hydrocephalus, one of the most common neurological disorders of childhood that produces mental debilitation and sometimes death in premature and newborn children.

The research appears in the September 7, 2011, issue of the journal Science Translational Medicine.

Hydrocephalus, which involves excess buildup of cerebrospinal fluid in the brain, affects about 1 in 500 children in the United States.

Currently only symptomatic treatment exists—the surgical placement of a shunt to drain away excess fluid. Researchers want to know the condition's causes, so they can figure out how to prevent and treat it. Scientists have known for some time that hydrocephalus was linked to bleeding events in the developing brain, but the reason for that linkage has not been clear.

The new study now suggests that hydrocephalus can be triggered by abnormal levels of lysophosphatidic acid (LPA), a blood-borne lipid that can enter the brain in high concentrations during bleeding events, with profound effects on developing brain cells.

The study showed that both blood and LPA itself acted through the same receptor (receptors are proteins to which one or more specific kinds of signaling molecules bind) to produce defects in the brains of developing mice that led to severe hydrocephalus; genetic removal of a specific LPA receptor or pre-treatment with a compound that blocked the receptor largely prevented the condition.

"This provides proof of concept for the medical treatment of this disease, and it also hints that this mechanism involving LPA could be relevant to other neurological conditions associated with altered brain development" said Jerold Chun, MD, PhD, a professor at Scripps Research and its Dorris Neuroscience Center, and senior author of the new study.

Chun's laboratory specializes in the study of lipid-signaling molecules involved in the developing brain, including LPA. LPA is normally produced in the fast-growing fetal brain, and appears to be important for the normal development of neural "progenitor" cells.

When the researchers added abnormally high concentrations of LPA to the brains of fetal mice, they found an unexpected effect on brain development. "When we looked at their condition as newborns, we were surprised to see that they uniformly had big, fluid-filled brains," said postdoctoral fellow Yun Yung, PhD. "It was a Eureka moment, because we realized that LPA might help explain hydrocephalus."

Reviewing the medical literature on the condition, Chun and Yung noted that it was often linked to brain-bleeding events in the womb and typically also featured some improperly developed brain structures. "Our experiments with LPA connected both sets of findings," said Yung, "because LPA is involved in blood clotting and can reach very high concentrations during hemorrhages; plus, our LPA-exposed mouse brains had structural abnormalities like those reported in human cases."

Cerebrospinal fluid cushions the brain, provides it with basic nutrients, and is normally produced by the membrane-like choroid plexus within the fluid-filled chambers of the brain known as ventricles. Ependymal cells that line these ventricles have hair-like extensions that are thought to promote the normal flow of fluid.

"In our LPA-exposed mice, there were patches in the ventricular lining where these ependymal cells were missing, which could have led to a disruption of the normal cerebrospinal fluid flow," said Yung.


A brain is the consistency of gelatin,floating in a bath of cerebrospinal fluid. This fluid also fills large structures, called ventricles, which lie deep inside and help keep the brain buoyant and cushioned.

Structures in the ventricles that normally permit the proper drainage of fluid also appeared to be partly blocked by the improper overgrowth of cells, which might have further contributed to the brain-damaging fluid buildup.

The researchers were able to repeat these effects using the normal LPA-containing fluid fractions of blood, thus showing that bleeding events plausibly can lead to hydrocephalus by increasing the brain's exposure to LPA.

To investigate how LPA exerted this effect, the team produced mice that genetically lack one or both of the two receptors—LPA1 and LPA2—to which LPA can bind on ventricle-building fetal progenitor cells, finding that the LPA1 receptor was required to produce hydrocephalus. "The idea here is that excess LPA causes these ventricular progenitor cells to get the wrong developmental signals via their LPA receptors, and so the ventricles and brain develop abnormally," said Chun.

In a final demonstration, the team pre-treated normal fetal mice with a compound that blocks the activation of LPA1 receptors, and found that even after LPA exposure, their signs of hydrocephalus were greatly reduced.

LPA1-blocking drugs currently are being developed for other conditions including lung fibrosis, and the new finding from Chun's lab may lead biotech or pharmaceutical companies to study their use in hydrocephalus.

"If you had an unborn baby who was at risk from an injury to the mother, an infection, or evidence of bleeding then, in principle, you could treat with a short-acting LPA1 blocker to prevent or reduce hydrocephalus," said Chun.

The discovery that excess LPA can wreak havoc in the developing brain could have broader implications as well. Abnormally high concentrations of LPA may be generated by fetal brain cells themselves, also producing abnormal LPA signaling. Moreover, schizophrenia, autism, and other developmental brain disorders have also been linked to fetal bleeding events and infections as well as ventricular abnormalities.

Adds Chun:"It's something that we need to investigate further, but it may be that excess LPA exposure in an unborn child's brain can have a variety of adverse effects on development, depending on the part of the brain that's exposed, the stage of brain development, and the duration of the exposure."

Additional Chun lab members contributing to the study, "Lysophosphatidic Acid Signaling May Initiate Fetal Hydrocephalus," were Tetsuji Mutoh, now at the Nara Institute of Science and Technology; Mu-en Lin; Kyoko Noguchi; Richard R. Rivera; Ji Woong Choi, now at Gachon University of Medicine and Science in Korea; and Marcy A. Kingsbury, now at Indiana University.

This work was supported by the National Institutes of Health, the National Science Foundation, and the Hydrocephalus Association.

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease.

Original article: http://www.scripps.edu/news/press_releases/20110907chun.html