|
Click weeks 0 - 40 and follow fetal growth
|
|||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||
|
Preschoolers' Math Performance Predicts Later Skill Estrogen Reverses Severe Pulmonary Hypertension September 15, 2011--------News Archive Protein In Heart Target for Colon Cancer Therapies Defining Hereditary Deafness Engineers Probe Mechanics Behind Progeria September 14, 2011--------News Archive A Vaccine for TB? Controlling Stem Cell's Form Can Determine Its Fate September 13, 2011--------News Archive Improving Women and Children's Health Worldwide Found: Gene for 3 Child Neurodegenerative Diseases Fast-Paced, Fantasy TV Affects Learning In Children September 12, 2011--------News Archive Common Gene Associated With Aortic Dissection Critical Similarity Between Two Stem Cell Types
|
The disease is marked by the deletion of 50 amino acids near the end of the lamin-A protein, which helps support a cell's nuclear membrane. At MIT, the researchers used molecular modeling which obeys the laws of physics at the molecular scale to simulate the behavior of the protein's tail under stress in much the same way a traditional civil engineer might test the strength of a beam: by applying pressure. In this instance, they created exact replicas of healthy and mutated lamin-A protein tails, pulling on them to see how they unraveled. "Using engineering mechanics to understand the process of rapid aging disease may seem odd, but it actually makes a lot of sense," says Markus Buehler, a professor in MIT's Department of Civil and Environmental Engineering who also studies structural proteins found in bone and collagen. In his new research, he worked with Kris Dahl, professor of biomedical engineering and chemical engineering at Carnegie Mellon, and graduate students Zhao Qin of MIT and Agnieszka Kalinowski of Carnegie Mellon. They published their findings in the September issue of the Journal of Structural Biology.
In its natural state, a protein and its tail exist in complex folded configurations that differ with each protein type. Many misfolded proteins are associated with diseases. In molecular simulations, Qin and Buehler found that a healthy lamin-A protein tail unravels sequentially along its backbone strand, one amino acid at a time. "It behaved much as if I pulled on a loose thread on my shirt cuff and watched it pull out stitch by stitch," said Qin. By contrast, the mutant protein tail, when pulled, first breaks nearly in half forming a large gap near the middle of its folded structure, then begins unfolding sequentially. The MIT scientists found that it takes an additional 70 kilocalories per mole (or one unit of energy) to straighten the mutant tails. So the mutant protein is actually more stable than its healthy counterpart. At Carnegie Mellon, Dahl and Kalinowski subjected lamin-A protein tails to heat, which causes proteins to denature or unfold. In their lab, they observed the same pattern of unraveling in healthy and mutated proteins as the MIT engineers did in their atomistic simulation. Zhao Qin then wrote a mathematical equation converting the temperature differential seen in denaturing the mutant and healthy proteins (4.7 degrees Fahrenheit) to the unit of energy found in the atomistic simulations. He found that the increase in temperature very nearly matched the increase in energy. This agreement validates the application of civil engineering methodology to the study of the mutated protein in diseased cells. The results were counterintuitive to the civil engineers, however, who are accustomed to flawed materials being weaker not stronger than their unimpaired counterparts. Lamin-A plays an important role in defining the mechanical properties of a cell's nuclear membrane as a component of the cell's nucleoskeleton. The nucleoskeleton must remain flexible enough to easily withstand deformation. In previous work, Dahl observed that nuclear membranes built from mutated proteins became very stiff and brittle, which can now be explained by the altered interactions observed in diseased cells. "Our surprising finding that the defective mutant structure is actually more stable and more densely packed than the healthy protein," said Buehler. "is contrary to our intuition that a 'defective' structure is less stable and breaks more easily, which is what engineers would expect in building materials. However, the mechanics of proteins are governed by the principles of nanomechanics, which can be distinctly different from our conventional understanding of materials at the macro scale." Original article: http://www.eurekalert.org/pub_releases/2011-09/vumc-pfi091311.php | |||||||||||||||||||||||||||