Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
September 23, 2011--------News Archive

Brain Wiring Continues Well Into Our 20s
The human brain doesn’t stop developing at adolescence, but continues well into our 20s, research from the University of Alberta demonstrates.

Vitamin D Deficiency Linked With Severe Asthma
Children with severe therapy-resistant asthma may have poorer lung function and worse symptoms due to lower levels of vitamin D in their blood.

Reprogramming Muscle Stem Cells to Regenerate
Researchers at the University of California, Berkeley, have turned back the clock on mature muscle tissue, coaxing it back to form new muscle.

September 22, 2011--------News Archive

BPA Changes In-Vitro Egg, Risking Down Syndrome
Bisphenol A is omnipresent in the plastic of common products such as beverage bottles, cans or baby bottles.

'Contaminants' Detected in Narragansett Watershed
Researchers say 'Emerging contaminants of concern' have been detected throughout the Narragansett Bay watershed.

New Plastics for Baby Bottles, Shopping Bags, More
With most of the plastics that define modern life dating to the1930s-1960s, a new breed of these ubiquitous materials are starting to gain a foothold.

September 21, 2011--------News Archive

Epigenetic Changes Don't (Neccessarily) Last
The first comprehensive inventory of epigenetic changes over several generations, shows that these changes often do not last.

Vacuum Device Makes Cellular Exploration Easier
New floating microscopic device will allow researchers to study a wide range of cellular processes.

September 20, 2011--------News Archive

11 Genetic Regions Link Schizophrenia/Bipolar Risk
Common genetic variants contribute to the risk of schizophrenia and bipolar disorder, an international research consortium has discovered.

Pediatric Brain Tumors
Regulatory protein presents potential drug target.

Crosstalk Between Bone, Fat and Pancreatic Cells
Cells in bone, fat and the pancreas appear to be talking to each other and one thing they likely are saying is, "Get moving."

September 19, 2011--------News Archive

Gene Catastrophe Causes Developmental Delay
Research has identified some cases of developmental delay or cognitive disorders associated with a sudden chromosomal catastrophe early in development.

Mom's High-Fat Diet 'Programs' Her Baby to Be Fat
This is the first study to demonstrate that a long-term maternal high-fat diet results in the deposition, in utero, of excess body fat in the newborn.

Length of Song Linked to Size of Bird's Upper Brain
Research has proven that the capacity for learning in birds is not linked to overall brain size, but to the relative size and proportion of their specific brain regions.

WHO Child Growth Charts


It’s a bit of a challenge. But, imagine a microscopic jet vacuum cleaner, the size of a pen nib that hovers over cell surfaces without ever touching them. Then imagine that the soap in the cleaning solution is replaced with various molecules that can be selectively delivered to the cells.

This gives you a sense of a new device that researchers believe will serve as a powerful tool to study the behaviour of living cells and a range of crucial cellular processes, from cancer cell formation to how neurons align themselves in the developing brain.

The device was developed by a team made up of Mohammad Ameen Qasaimeh and David Juncker from McGill’s Department of Biomedical Engineering, and Thomas Gervais from the Ecole Polytechnique of Montreal.

It is based on using quadrupoles, or paired identical objects, two "positive" and two "negative" arranged in a square in order to create a force field between them. Electrostatic quadrupoles are used in radio antennae, and magnetic quadrupoles serve to focus beams of charged particles in particle accelerators. Quadrupoles also exist in fluids. They have been described theoretically for decades, but this is the first time that they’ve been fabricated in a lab setting.

The device is fabricated by etching four holes in a silicon tip, which is about 1 mm square. When the device is brought close to a surface, it acts on it pretty much like a water jet vacuum cleaner would. Two apertures (the “plus” holes, or sources) emit microscopic jets of fluid, onto the surface below and the two other apertures (the “minus” holes, or drains), immediately suck them back into the device.

In the vacuum cleaner analogy, if the carpet is replaced by a slice of living tissue, or a layer of adherent cells, the device can float over that surface to reach a desired target. It then simply sends out a stream of fluid with the chemicals needed to stimulate, probe, detach or kill the cells, depending on the application.

Photo: A microfluidic quadrupole, formed by injecting fluids from two source apertures (the pluses) and aspirating back in two sink apertures (the minuses). Fluorescent beads are used to trace the path of the flow much as iron filings can trace the path of the magnetic field around a magnet.

The device can also create regions of smoothly varying chemical concentration called gradients. These gradients are the key to studying many cellular processes such as how bacteria and other cells move about in the body. The researchers hope that this new kind of device will find many applications in the in vitro study of a wide range of essential cellular processes.

The research was funded by: CIHR, NSERC, FQRNT, CFI and CRC.

An article about the device was recently published in the journal Nature Communications. For an abstract: http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1471.html

More news from McGill University: http://www.mcgill.ca/newsroom/

Original article: http://www.mcgill.ca/newsroom/news/item/?item_id=177515