Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive April 10, 2014

 


This puppy is a Nova Scotia Duck Tolling Retriever, the breed with the newly
discovered genetic mutation for cleft palate. (Imaage - Danika Bannasch/UC Davis)






G. 3D reconstruction of microCT imaging of CP1 and WT skulls with mandibles removed.

CP1 skull shows abnormally shaped palatine process and palatine bones.
Bones colored blue are the palatine processes and palatine bones.

WT skull shows anatomical location of normal palatine sutures
and shape of palatine processes and palatine bones.

H. 3D reconstruction of mandibles depicting abnormal angulation
of the condylar process (*) in CP1 mandibles compared to WT mandibles.

Image credit: PLOS Genetics, DOI: 10.1371/journal.pgen.1004257

WHO Child Growth Charts

 

 

 

Dog cleft palate aids understanding of birth defect

University of California at Davis School of Veterinary Medicine researchers have identified the genetic mutation responsible for a form of cleft palate in the dog breed Nova Scotia Duck Tolling Retrievers.

They hope that the discovery, which is the first dog model for the craniofacial defect, will lead to a better understanding of cleft palate in humans. Although cleft palate is one of the most common birth defects in children, affecting approximately one in 1,500 live human births in the United States, it is not completely understood.

The findings appear online in the journal PLOS Genetics.

“This discovery provides novel insight into the genetic cause of a form of cleft palate through the use of a less conventional animal model,” said Professor Danika Bannasch, a veterinary geneticist who led the study. “It also demonstrates that dogs have multiple genetic causes of cleft palate that we anticipate will help in the identification of additional candidate genes relevant to human cleft palate.”

Bannasch, who holds the Maxine Adler endowed chair in genetics, explains that common breeding practices have made the dog a unique animal model to help understand the genetic basis of naturally occurring birth defects.


Cleft palate occurs when there is a failure in the formation of the secondary palate, which makes up all of the soft palate as well as the majority of the hard palate.

Disrupting the sequential steps of palate development causes a cleft palate and leads to the spectrum of cases observed. Children born with cleft palate may develop hearing loss and difficulties with speech and eating. They can also be at increased risk for neurological deficits.


By conducting a genome-wide study of these particular retrievers with a naturally occurring cleft palate, researchers identified the gene mutation in the breed.

Dogs with this mutation also have a shortened lower jaw, similar to humans who have Pierre Robin Sequence. The disorder, a subset of cleft palate, affects one in 8,500 live human births and is characterized by a cleft palate, shortened lower jaw and displacement of the base of the tongue.

Abstract
Cleft palate (CP) is one of the most commonly occurring craniofacial birth defects in humans. In order to study cleft palate in a naturally occurring model system, we utilized the Nova Scotia Duck Tolling Retriever (NSDTR) dog breed. Micro-computed tomography analysis of CP NSDTR craniofacial structures revealed that these dogs exhibit defects similar to those observed in a recognizable subgroup of humans with CP: Pierre Robin Sequence (PRS). We refer to this phenotype in NSDTRs as CP1. Individuals with PRS have a triad of birth defects: shortened mandible, posteriorly placed tongue, and cleft palate. A genome-wide association study in 14 CP NSDTRs and 72 unaffected NSDTRs identified a significantly associated region on canine chromosome 14 (24.2 Mb–29.3 Mb; praw = 4.64×10−15). Sequencing of two regional candidate homeobox genes in NSDTRs, distal-less homeobox 5 (DLX5) and distal-less homeobox 6 (DLX6), identified a 2.1 kb LINE-1 insertion within DLX6 in CP1 NSDTRs. The LINE-1 insertion is predicted to insert a premature stop codon within the homeodomain of DLX6. This prompted the sequencing of DLX5 and DLX6 in a human cohort with CP, where a missense mutation within the highly conserved DLX5 homeobox of a patient with PRS was identified. This suggests the involvement of DLX5 in the development of PRS. These results demonstrate the power of the canine animal model as a genetically tractable approach to understanding naturally occurring craniofacial birth defects in humans.

Author Summary
Cleft palate is one of the most commonly occurring birth defects in children, and yet its cause is not completely understood. In order to better understand cleft palate we have turned to man's best friend, the domestic dog. Common breeding practices have made the dog a unique animal model to help understand the genetic basis of naturally occurring birth defects. A genome-wide association study of Nova Scotia Duck Tolling Retrievers with naturally occurring cleft palate led to the investigation of two homeobox genes, DLX5 and DLX6. Dogs with this mutation also have a shortened lower jaw, which resembles those who have Pierre Robin Sequence (PRS). Investigation into people with PRS identifies a mutation within a highly conserved and functional region of DLX5 that may contribute to the development of PRS. This exemplifies how the dog will help us better understand common birth defects.

Additional UC Davis researchers include: Zena T. Wolf, a graduate student in the Department of Population Health and Reproduction at the School of Veterinary Medicine, whose thesis topic is the study of craniofacial clefts in dogs; and Assistant Professor Boaz Arzi from the Department of Surgical and Radiological Sciences, School of Veterinary Medicine.

Funding was provided by the Center for Companion Animal Health at the School of Veterinary Medicine and the National Institutes of Health.

About UC Davis
For more than 100 years, UC Davis has been one place where people are bettering humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the state capital, UC Davis has more than 33,000 students, over 2,500 faculty and more than 21,000 staff, an annual research budget of over $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Return to top of page