Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
April 29, 2011--------News Archive

Catching Autism At The 1-year Well-Baby Check-Up
A novel strategy developed by autism researchers at the University of California, San Diego, shows promise as a simple way to detect cases of Autism Syndrome.

A New Wrinkle In The Genetic Code
Long ago a mouse was created that is just now teaching us that mutations in the proteins produced from ribosomes can lead to unexpected birth defects.


April 28, 2011--------News Archive

Tired Neurons Nod Off in Sleep-Deprived Rats
The more rats are sleep-deprived, the more neurons take catnaps. Though the animals are awake and active, neurons in the cortex, are briefly falling asleep.

Obese Adolescents Lacking Vitamin D
Vitamin D status is significantly associated with muscle power/force; a deficiency may interfere with the obese adolescent's ability to increase physical activity.


April 27, 2011--------News Archive

Men and Women Respond Differently to PTSD
Men and women had starkly different immune system responses to chronic post-traumatic stress disorder. Men show no response, women show a strong one.

Motor Protein May Offer Promise In Ovarian Cancer
A regulatory motor protein can block ovarian tumor growth, leading to cancer cell death and new therapies to treat the disease.


April 26, 2011--------News Archive

Protein Levels Could Signal Childhood Diabetes
Decreasing blood levels of a protein that helps control inflammation may be a red flag that could help children avoid type 1 diabetes.

Best Treatment For Gestational Tumors
A clinical trial has sifted out the most effective chemotherapy regimen for quick-growing but highly curable cancers arising from the placentas of pregnant women.


April 25, 2011--------News Archive

Frog Embryos Teach Us About Heart Development
Thanks to new research at the University of Pennsylvania, there is new insight into the processes that regulate the formation of the heart.

Brain Cells Offer Insight on How Cancer Spreads
The mechanism regulating embryonic development in plants displays similarities to a signalling pathway in embryonic stem cells in mammals.

WHO Child Growth Charts

Dynein and kinesin protein structures

Among U.S. women, an estimated 21,880 new cases and 13,850 deaths from epithelial ovarian cancer occurred in 2010, one of the most common forms of ovarian cancer and the most lethal gynecologic cancer in women.

Previously, Kathleen M. Mulder, Ph.D., professor, biochemistry and molecular biology at Penn State College of Medicine, along with members of her laboratory, learned that km23-1 - a protein - is defective in nearly half of all ovarian cancer patients. In their study, researchers induced over-expression of km23-1 in human ovarian cancer cells placed in mice, causing the cells to produce large amounts of the normal protein.

km23-1 is a subunit of dynein, a motor protein that transports cargo along paths in the cell called microtubules. The dynein motor has many jobs in the cell, including major roles in cell division.

"Although microtubule-binding agents, such as the drug paclitaxel, are being used in the treatment of ovarian cancer, drug resistance has significantly limited their efficacy," Mulder said. "It is critical to develop novel, targeted therapeutics for ovarian cancer. Motor protein regulatory agents may offer promise for providing improved efficacies with reduced side effects in the treatment of ovarian cancer and other human malignancies."

Nageswara Pulipati, Ph.D., postdoctoral fellow in Mulder's lab, said, "We used a method to cause the tumors to express high levels of normal km23-1, but only in the experimental group of mice. Compared to the control group, the tumors were much smaller when km23-1 was over-expressed."

"The dynein motor protein is needed to transport checkpoint proteins along the microtubules during mitosis. However, when km23-1 levels are high, at least one checkpoint protein, BubR1, is not transferred properly," said Qunyan Jin, M.D., research associate in Mulder's lab.

During the cell division process, several checkpoints exist where specific proteins put a hold on cell division until proper completion of a specific step can be verified. When km23-1 is over-expressed, a checkpoint is stalled during mitosis -- the stage in the cell division process that normally facilitates equal splitting of the chromosomes into two identical groups before the mother cell splits into two daughter cells.

"Normally, if everything is correct at this checkpoint, the cell then goes on to divide," Mulder said. "However, with the over-expression of km23-1, the checkpoint stays on and cell division does not proceed normally, which leads to a slow cell death."

Mulder and her lab team will now look at how the over-expression of km23-1 may be mimicked to target km23-1, using nanotechnology to deliver a drug to the cancer cells, and how this approach may possibly be used in humans.
This National Institutes of Health and the Department of Defense supported this work.

Also contributing to this research were Xin Liu, Ph.D., Yan Zhao, Ph.D., Baodong Sun, M.D., Manoj K. Pandey, Ph.D., Jonathan P. Huber, Ph.D. and Wei Ding, Ph.D.

Findings were reported online (http://onlinelibrary.wiley.com/doi/10.1002/ijc.25954/abstract) and will appear in an upcoming edition of The International Journal of Cancer.