Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
November 4, 2011--------News Archive

Identifying Brain Cells That Keep Us Awake
Researchers at UCLA have identified the group of neurons that mediates whether light arouses us — or not.

TBL1X Gene Involved In Autism Spectrum Disorder
An X-chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males.

“Love Hormone” Helps Direct Development of Brain
Hormones released from nerves regulate a series of vital body processes, including the balance of fluids and uterine contractions in childbirth.

November 3, 2011--------News Archive

Steroids in Preemies Impair Brain Growth
Premature infants given drugs to support lung maturation and normalize blood pressure, are at increased risk for having impaired growth of the cerebellum.

Potential Treatment for Sickle Cell Disease
Increasing the expression of proteins TR2/TR4 can lead to higher fetal hemoglobin levels in sickle cell patients.

New Drug Shows Promise Against Multiple Sclerosis
A new drug targets a molecule - CD20 found on the surface of B cells and B cells seem to induce the immune system T cells to attack.

November 2, 2011--------News Archive

Babies Understand Each Other at Ten Months Old
At 10 months, babies start to understand another person’s thought process, providing new insights on how communication develops.

Bacteria Swap Genes Between Species Readily
Microbes have developed a quick and effective way to exchange genetic information from animals to humans.

Pinpointing Cause of Unexplained Miscarriage
The same kind of blood-clotting in coronary arteries or blood vessels in the brain which causes heart attacks and strokes also happens in the placenta.

November 1, 2011--------News Archive

Pregnant Mothers At Risk From Air Pollution
A Californian-based study has looked in detail at air quality and the impact of traffic-related air pollution on premature birth.

Linking A Spectrum of Childhood Diseases
An international collaboration of scientists has identified a genetic mutation causing a rare childhood disease characterized by inflammation and fat loss.

Placenta and Uterus Battle Becomes Preeclampsia
A battle brews in the mother’s womb between the father’s biological goal to produce the biggest, healthiest baby possible vs. the mother’s need to live through delivery.

October 31, 2011--------News Archive

Fetal Heart Rate Not a Good Indicator for Health
Maternal-fetal medicine specialists at Intermountain Medical Center seek better 'road map' to improve deliveries, healthier babies.

Swedish Discover Bisphenol A Affects Newborn Brain
An observed effect induced in neonatal baby mice after exposure to Bisphenol A, persisted into adulthood.

Not Your Mother's Birth Control
Today's hormonal forms of birth control are vastly different from those used by earlier generations of women, both with lower levels of hormones and with different means of delivery (not just a pill), but many of the same problems related to women's pleasure remain.

WHO Child Growth Charts

This is the neurohypophysis of a a zebrafish embryo's brain. This area of the brain acts as an interface between: nerve cells (green), arteries (purple) and veins (red) all shown in 3D.

Much of the body’s chemistry is controlled by the brain – from blood pressure to appetite to food metabolism.

In a study published recently in Developmental Cell, a team of scientists led by Dr. Gil Levkowitz of the Weizmann Institute has revealed the exact structure of one crucial brain area in which biochemical commands are passed from the brain cells to the bloodstream and from there to the body. In the process, they discovered a surprising new role for the “hormone of love,” showing that it helps to direct the development of this brain structure.

The area in question, the neurohypophysis, is an interface between nerve fibers and blood vessels located at the base of the brain. Here, some of the major brain-body interactions take place: Hormones released from nerves into the blood vessels regulate a series of vital body processes, including the balance of fluids and uterine contractions in childbirth.

Although the neurohypophysis has been studied for more than a century, the scientists in the Weizmann Institute developed new genetic tools that enabled them to examine the exact three-dimensional arrangement of this brain structure and clarify the cellular and molecular processes leading to its formation.

The human neurohypophysis is exceedingly complex, so the scientists performed their research on live embryos of zebrafish. These fully transparent embryos offer a unique model for studying the vertebrate brain, lending themselves to genetic manipulation with relative ease and enabling researchers to observe the actual formation of a neurohypophysis under a microscope.

The study revealed a surprising new function for the hormonal messenger oxytocin, dubbed the “hormone of love” because, in addition to controlling appetite and such female reproductive behaviors as breastfeeding, it is also involved in mother-child and mate bonding.

The scientists showed that oxytocin, one of the two major hormones secreted in the adult neurohypophysis, is involved in the development of this brain area already in the embryo. At this stage, the oxytocin governs the formation of new blood vessels.

These findings provide an important advance in basic research because they shed light on fundamental brain processes, but in the future they might also be relevant to the treatment of disease. Since the neurohypophysis is one of only a few portions of the brain able to regenerate after injury, an understanding of how it is formed may one day help achieve such regeneration in other parts of the central nervous system.

“The messenger helps to build the road for transmitting its own future messages,” says Levkowitz . Developmental Cell highlighted the study’s findings in a preview headlined, “The Hormone of Love Attracts a Partner for Life.”

The research was conducted in Levkowitz’s lab in the Molecular Cell Biology Department by Ph.D. student Amos Gutnick together with Dr. Janna Blechman. The Weizmann scientists worked in collaboration with Dr. Jan Kaslin of Monash University, Australia; Drs. Lukas Herwig, Heinz-Georg Belting and Markus Affolter of the University of Basel, Switzerland; and Dr. Joshua L. Bonkowsky of the University of Utah, United States.

Dr. Gil Levkowitz’s research is supported by the Dekker Foundation; the Kirk Center for Childhood Cancer and Immunological Disorders; and the Irwin Green Alzheimer's Research Fund. Dr. Levkowitz is the incumbent of the Tauro Career Development Chair in Biomedical Research.

Original article: http://www.eurekalert.org/pub_releases/2011-11/bc-xmt110211.php