Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
November 11, 2011--------News Archive

Pre-birth Brain Growth Problems Linked to Autism
A small, preliminary study provides direct evidence for possible prenatal causes of autism.

Poor 1st, 3rd Trimester Sleep Linked to Early Births
Improving mother’s sleep habits through early intervention could reduce risk.

November 10, 2011--------News Archive

Possible New Target for Treating Kids' Liver Disease
An unexpected discovery in an often lethal pediatric liver disease may lead to a new therapy for the hard-to-treat condition.

Diagnoses of Autism Spectrum Disorders Vary Widely
Study suggests common diagnostic subcategories like asperger syndrome are flawed are of questionable value.

November 9, 2011--------News Archive

Single Protein Causes Varicose Veins
Scientists have developed a model for studying varicose veins. Their hope is that drugs can be developed to decelerate or even prevent new varicose veins.

"Switching On/Off" of Brain Genes Throughout Life
The “switching on” or expression of specific genes in the human makes each human being unique. The On/Off switching of brain cells continues throughout life.

Balancing Male and Female X Genes
Cells use 'mathematics' to equalize the loss of an X chromosome gene in males.

November 8, 2011--------News Archive

MRI Reveals Injuries in Developing Brain
New research supports the potential of high-field MRI for early identification of tiny brain injuries in the preterm infant.

Epigenetic Signatures of Autism
Analysis reveals overlap between genetic and epigenetic risk maps in autism.

November 7, 2011--------News Archive

"Cat Litter" Disease Alters Brain Chemistry
Infection by the brain parasite Toxoplasma gondii, directly affects the production of dopamine in the brain.

Two Molecules That Kill Lymphoma Cells In Mice
Two molecules have been identified that may be more effective as lymphoma cancer killers than anything currently available on the market.

Why Some Children Became Critically Ill in 2009 Flu
The largest study to date finds that kids co-infected with MRSA had an increased death risk of 8-fold. Flu vaccination is strongly urged!

WHO Child Growth Charts

In a study that included human livers and a mouse model of biliary atresia, researchers report in the November Journal of Clinical Investigation that not all children with biliary atresia share the same disease process. Some patients have a second molecular conductor of disease called Th2 (T helper cell 2) immune system.

Biliary atresia is disease that destroys the bile ducts in and near the liver in the first few months of life. Driven by an overly aggressive immune system response after birth, the condition is the most common cause of severe pediatric liver disease. The ducts, which normally carry bile from the liver and gall bladder to the intestines, become blocked over time. Even with treatment, which can include surgery, children often need a liver transplant within two years of birth.

Despite the need for better therapies, progress has been hampered by a limited knowledge of biological processes driving the disease, according to Jorge Bezerra, MD, principal study investigator and a researcher/physician in the division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children's Hospital Medical Center.

"Our findings add a new dimension to the understanding of biliary atresia," Bezerra said. "They provide a potential target for new therapies and have implications for clinical trials. Now, depending on the molecular signature of a child's disease, we can develop new strategies to also target the Th2 immune system with anti-inflammatory agents."

Bezerra said physicians have learned in clinical trials that not all children with biliary atresia respond in similar fashion to the same treatment protocols. The current study may help explain why.

Until now, only molecular signals from the Th1 cytokines had been linked consistently to the biochemical processes that cause biliary injury. Th cytokines, also referred to as T-helper cells, are part of the immune system. They send molecular signals to help initiate and maximize the body's immune system response. In biliary atresia, that response can go into overdrive and become too aggressive, piling on damage to the bile ducts and the liver.

Despite the prevalence of Th1 detection in children with the disease, there have been reports that some biliary atresia patients exhibit low levels of Th1. This led Bezerra and his colleagues to look for Th1-independent drivers.

They tested their hypothesis with genetically modified newborn mice that lack the ability to mount a Th1-modulated immune response. The mice were infected with rhesus rotavirus Type A, which can cause severe inflammation of the bile ducts if infections occur soon after birth. This prompted an almost immediate and robust immune response involving Th2 cytokines.

The mice developed damaged bile ducts, duct obstructions within seven days and then full atresia (blockage) shortly thereafter. The researchers then depleted a Th2 molecule known as Interleukin 13 and noted a reduction in tissue infiltration by immune cells. It also maintained the integrity of bile duct tissues and prevented obstructions from occurring.

Bezerra examined the blood of children with biliary atresia and found that some of them exhibit high levels of Th2 cytokines. This, coupled with the current study findings, demonstrate "a compatibility between Th2 and the onset of biliary atresia, and suggest that patient subgrouping in future clinical trials should account for differences in Th2 status," he said.

The current study was funded in part by grants from the National Institutes of Health and the Digestive Disease Research Core Center in Cincinnati. It follows a study from Bezerra and colleagues published Sept. 29 in Science Translational Medicine, which points to how immune system dendritic cells trigger the initial immune response in a mouse model of biliary atresia.

The September study reported that dendritic cells – which process and transmit signals from the surfaces of tissues to recruit other immune system components – activated natural killer cells in the immune system. This activation set off a cascade of hyperactive immune response in the newborn mice, worsening the disease.

Researchers were able to disable the process be depleting or blocking the signaling activity of plasmacytoid dendritic cells and Interleukin 15. This prevented injury of the bile ducts and shut down the disease process. Bezerra cautioned that more research is needed before determining whether blocking this process may have therapeutic benefit in humans.

Cincinnati Children's Hospital Medical Center is one of just eight children's hospitals named to the Honor Roll in U.S. News and World Report's 2010-11 Best Children's Hospitals. It is ranked #1 for digestive disorders and highly ranked for its expertise in pulmonology, cancer, neonatology, heart and heart surgery, neurology and neurosurgery, diabetes and endocrinology, orthopedics, kidney disorders and urology. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for quality and transformation work by Leapfrog, The Joint Commission, the Institute for Healthcare Improvement, the federal Agency for Healthcare Research and Quality, and by hospitals and health organizations it works with globally. Additional information can be found at http://www.cincinnatichildrens.org.

Original article: http://www.eurekalert.org/pub_releases/2011-11/cchm-ptt110811.php