Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
November 18, 2011--------News Archive

Increasing Uterine Development Genes Improve IVF
Increasing certain developmental genes at precise times in the uterus might improve pregnancy rates from in vitro fertilization-embryo transfers (IVF-ET).

“Silent” Strokes in Children with Sickle Cell Anemia
Silent strokes are the most common form of neurological injury found in SCA, with more than 25 percent of children with the disorder suffering a SCI by age six and nearly 40 percent by age 14.

Mystery Atom In Enzyme Critical for Life
All life requires the element nitrogen from the atmosphere to form amino acids and build proteins. But how to single out the atom in the middle of the process?

November 17, 2011--------News Archive

Breast-Milk Stem Cells!
Embryonic-like stem cells have been isolated from breast milk in large numbers.

All Mammals Share Common Brain Organization
Animal studies show that the outer layer of the brain – the cortex – is organized by genes which exhibit highly similar regional patterns between species.

3 p.m. Slump? A Sugar Rush Is NOT The Answer
Protein, not sugar, stimulates cells to keep us thin and awake, new study suggests

November 16, 2011--------News Archive

Delayed Cord Clamping Protects Babe from Iron Loss
Waiting for at least three minutes before clamping the umbilical cord in healthy newborns improves their iron levels at four months.

Mom's Brain More Damaged by Alcohol than Dad's
After only four years of problem drinking, a significant decrease in the function of the serotonin system in women's brains can be seen.

Regenerative Medicine
Engineered, Blood Vessels Reverse Anemia in Mice
System combining gene therapy with tissue engineering could avoid the need for frequent injections of recombinant drugs.

November 15, 2011--------News Archive

Parkinson's Risk Great if Exposed Trichloroethylene
Symptoms of disease may appear 10 to 40 years following exposure.

Fetal Placental Stem Cells May Help Maternal Heart
Researchers have discovered the therapeutic benefit of fetal stem cells in helping the maternal heart recover after heart attack or other injury.

Pituitary-Like Tissue Grown From Mouse Stem Cells
Creating functional, three-dimensional tissue and organs from pluripotent embryonic stem cells (EScs) is one of the grand challenges of stem cell research.

November 14, 2011--------News Archive

Dyslexia Not Tied To Low IQ
Research on brain activity fails to support widely believed expectation that dyslexic students may have lower reading ability.

Intestinal E. coli Can Convert Sugar to Biodiesel Fuel
Biodiesel can be generated using E. coli as a catalyst, which will produce high volumes of the fuel with just a little tweaking of the bacteria's cell controls.

Cooked Food May Account For Human Big Brains
Harvard study finds an increase in energy from meat, suggesting cooking food was key to human evolution.

WHO Child Growth Charts

When it comes to making biodiesel cheaply and efficiently enough to be commercially feasible, E. coli may prove to be "the little bacterial engine that could," say Stanford researchers.

Biodiesel can be made from plant oil or animal fat – usually the former. Used cooking oil from restaurants is common, but for biodiesel to contribute significantly to reducing fossil fuel use, there needs to be a way to mass produce it from plant-derived raw materials. The problem is that synthesizing biodiesel is complicated. That is where E. coli comes in.

The bacteria, often discussed in terms of the human digestive tract, also act as a catalyst in generating biodiesel by converting inexpensive sugars into fatty acid derivatives that are chemically similar to gasoline.

But E. coli's natural conversion capability is not up to snuff, commercially speaking, and researchers tinkering with its internal machinery have yet to boost its capability enough to cross the commercial threshold.

So Chaitan Khosla, a Stanford professor of chemistry and of chemical engineering, decided to investigate whether there might be a natural limit that holds back E. coli's conversion capabilities. In other words, does the basic catalytic engine in E. coli have enough horsepower to do the job at the needed scale?

"The good news is that the engine that makes fatty acids in E. coli is incredibly powerful," Khosla said. "It is inherently capable of converting sugar into fuel-like substances at an extraordinary rate. The bad news is this engine is subject to some very tight controls by the cell."

It turns out that like any high performance engine, the catalytic process in E. coli can only attain peak efficiency when all the controls are tuned just right. The research is described in a paper published in Proceedings of the National Academy of Sciences. Khosla is a coauthor of the paper, which is available online.

Scientists don't yet understand how all the cellular controls operate. It will require a deeper understanding of the biochemistry of E. coli than they have now to figure that out, Khosla said. But his research team is making progress homing in on the most promising part of the conversion process, thanks in part to a new approach they employed in their analysis.

The researchers managed to isolate all the enzymes and other molecular participants involved in the process that produces fatty acids in E. coli and assemble them in a test tube for study.

"We wanted to understand what limits the ability of E. coli to process sugar into oil. The question we were asking is analogous to asking what limits the speed of my Honda to 150 miles an hour and no faster?" Khosla said. "The most direct and powerful way to figure it out is to pull the biosynthetic engine out of the cell and put it through its paces in a test tube."

By doing so, the team was able to study how the enzymes involved in fatty acid biosynthesis performed when they were free from other cellular influences. That was critical to their analysis, because the products in question, fatty acids, are essentially soap, Khosla said, and too much of them would hurt the bacteria. That is why E. coli has developed some very elaborate and effective ways to contain the amount of fatty acid biosynthesis inside the cell.

The fatty acids can't be pumped directly into your gas tank – cars and trucks won't run on soap, after all – but they are an excellent precursor to biodiesel.

Biodiesel has so far lagged behind ethanol as a means of cutting fossil fuel use in vehicles because ethanol is easier and cheaper to make. But biodiesel has a higher energy density and lower water solubility than ethanol, which offer significant advantages.

"It is closer in chemical properties to a barrel of oil from Saudi Arabia than any other biologically derived fuel," Khosla said. Thus it could easily be blended into diesel and gasoline, or used alone as a bona fide transportation fuel.

If researchers can figure out how to manipulate the cellular means of production in E. coli, biodiesel could be made cheaply enough that the little engine of E. coli could end up powering a lot of larger engines at far less cost to the environment than with fossil fuels.

Xingye Yu, graduate student in chemical engineering, and Tiangang Liu, postdoctoral scholar in chemistry, contributed equally to the research and are coauthors of the paper.

The research was funded by a grant from LS9, a biofuels company.

Original article: http://news.stanford.edu/news/2011/november/khosla-ecoli-biodiesel-111011.html