Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
November 25, 2011--------News Archive

Women at Low Risk Can Safely Choose Birth Style
Women with low risk pregnancies should be able to choose where they give birth, concludes The Birthplace in England national prospective cohort study.

Finger (Mal)formation Function of Desert DNA
Explaining the diversity of leg shapes in the animal kingdom and hereditary defects in finger formation.

Key Molecular Switch for Telomere Extension Found
For the first time, a key target for DNA damage is found that must be chemically modified to enable an enzyme thought to play a key role in cancer and aging.

New Role for Gene in Maintaining Steady Weight
Findings may help combat obesity and diabetes.

November 24, 2011--------News Archive

New Facts About Stuttering
Some forms of persistent stuttering are caused by mutations in a gene governing the recycling of old cell parts - not speech.

Preventing Preemie Brain Injury
New advances could eventually help reduce the number of premature babies who develop cerebral palsy, epilepsy or behavioral disorders such as ADHD.

Short Stature May Be Due To a 'Shortage' of Genes
Research suggests that uncommon genetic deletions are associated with short stature.

November 23, 2011--------News Archive

Intestinal Disorder, Preemies and AB Blood Type
Preemies with the AB blood type who develop NEC are nearly three times as likely to die from it as preemies with other blood types.

Babies Fed Fish Before 9 Months Wheeze Less
But pre-natal pain and fever antibiotics taken by mom in pregnancy, or by the baby in the first-week of life, increase risk of "pre-school wheeze."

Physical Activity Improves Quality Of Sleep
People sleep significantly better and feel more alert during the day if they get at least 150 minutes of exercise a week, a new study concludes.

November 22, 2011--------News Archive

Critical Molecules For Hearing/Balance Discovered
Gene-therapy trial will attempt to restore hearing in deaf mice.

Tweaking One Gene Makes Muscles Twice As Strong
Salk scientists and their collaborators find new avenue for treating muscle degeneration in people who can't exercise.

Fruit Fly Intestine Holds Secret to Fountain of Youth
Long-lived fruit flies offer Salk scientists clues to slowing human aging and fighting disease.

November 21, 2011--------News Archive

Nerve Cells Key to making Sense of All of Our Senses
Scientists have unraveled how the brain manages to process complex, rapidly changing, and often conflicting sensory signals and make sense of our world.

Discovery of A New Muscle Repair Gene
Thanks to next-generation DNA sequencing, an international team of scientists have discovered more about the function of muscle stem cells.

Immune System Governs Stem Cell Regeneration
Controlling a stem cell transplant recipient’s immune response may be major key to successful bone regeneration.

WHO Child Growth Charts

Researchers have found long-sought genes in the sensory hair cells of the inner ear that, when mutated, prevent sound waves from being converted to electric signals – a fundamental first step in hearing. The team restored these electrical signals in the sensory cells of deaf mice by introducing normal genes.

The research was co-led by Jeffrey Holt, PhD, in the department of otolaryngology at Children’s Hospital Boston, and Andrew Griffith, MD, PhD, of the NIH’s National Institute on Deafness and other Communication Disorders (NIDCD)

Their study paves the way for a test of gene therapy to reverse a type of deafness, to be conducted by Holt and Swiss collaborators. The findings appear in the November 21 online issue of the Journal of Clinical Investigation.

Sound waves produce the sensation of hearing by jiggling protruding hair-like structures on sensory hair cells in the inner ear. Scientists have long believed that the hair cells carry a protein that converts this mechanical motion into electrical signals. While similar proteins have been identified for other senses – taste, smell, sight – researchers had been unable to find the critical protein required for hearing, in part because of the difficulty of getting enough cells from the inner ear to study.

“People have been looking for more than 30 years,” says Holt, also a member of the F.M. Kirby Neurobiology Center at Children’s Hospital Boston. “Five or six possibilities have come up, but didn’t pan out.”

Holt, Griffith and colleagues found that two related proteins, TMC1 and TMC2, are essential for hearing. They make up gateways known as ion channels, which sit atop the hair-like projections (called stereocilia) and let electrically charged molecules (ions) move in to the cell, generating an electrical signal that ultimately travels to the brain.

The gene for TMC1 was previously shown by Griffith and NIDCD-funded collaborators to be mutated in both mice and humans with hereditary deafness. TMC2, the new study found, seems to have a redundant function and may compensate if TMC1 is defective.

The study also found that the same defects affect sensory hair cells in the vestibular system, which underlies the sense of balance. Although TMC1 mutations cause only hearing loss, not balance problems, in humans, mice with defects in both TMC1 and TMC2 are deaf and fail balance tests requiring them to navigate a rotating rod.

The investigators then engineered an adenovirus to carry normal copies of TMC1 or TMC2 into the inner-ear hair cells of mice that had mutations in both genes. Using special techniques developed in Holt’s lab, they recorded electrical responses to noise in the sensory hair cells when either TMC1 or TMC2 was added back – where before there had been none. “This is the first time anything like this has been done,” says Holt.

But does restoring the electrical response translate into restoration of hearing? Holt and collaborators at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland recently received a $600,000 grant for a gene-therapy trial in mice. The researchers will deliver genes to the inner ear and measure whether electrical signals can be detected in the 8th cranial nerve and whether the animals respond to sound. EPFL will supply newer, safer gene-delivery vectors for testing that could potentially be developed for human trials.

According to the NIDCD, about 1 in 300 to 500 newborns are born deaf or hard-of-hearing, and it’s believed that about half of cases have genetic causes. About 60 genes, including TMC1, are known to be associated with human deafness.

The study was funded by the National Institutes of Health and the Hazel Thorpe Carman & George Gay Carman Trust for Scientific Research. Yoshiyuki Kawashima, Gwenaëlle S.G. Géléoc and Kiyoto Kurima were co-first authors. Jeffrey Holt, formerly at the University of Virginia, and Andrew Griffith were co-senior authors.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members ofthe Institute ofMedicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Founded as a 20-bed hospital for children, Children’s Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children’s also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children’s, visit: http://vectorblog.org.

Original article: http://www.eurekalert.org/pub_releases/2011-11/chb-cmf111711.php