Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
December 2, 2011--------News Archive

Working Moms Multitask More Than Dads
Not only are working mothers multitasking more frequently than working fathers, but their multitasking experience is more negative as well.

Unlocking the Genetic Mystery of Sarcomas
Study uncovers potential targets for treating a disease affecting children and adults.

When Babies Wake, Cortisol Rises to Mom's Level
The hormone cortisol in adults rises and lowers according to stress. But in babies cortisol remains level following waking - and tunes in with mom's level.

December 1, 2011--------News Archive

Home Births – Then and Now
A comparison of home-birth trends of the 1970s finds many similarities – and some differences – related to trends in home births today.

Risk of Suicide In Pregnant Women, New Mothers
An analysis of new data highlights risk factors that could be targeted by interventions.

Addiction Damages PreFrontal Cortex
Brain structure-function impairment may be related to an inability to assess rewards and consequences, behavior associated with addiction.

November 30, 2011--------News Archive

Gene Puts Brakes On Breast Cancer Progression
Newly published research explores the role of gene in tumour suppression

‘Perfect Parent’ Not A Good Idea
Seeking perfection as a parent works better for dads than for moms.

Kindergarten Friendships Matter, Especially for Boys
High-quality friendships in kindergarten may mean that boys will have fewer behavior problems and better social skills in first and third grades.

November 29, 2011--------News Archive

Cleft Lip Corrected Genetically in Mouse Model
Scientists have successfully genetically repaired cleft lips in mice embryos specially engineered for the study of cleft lip and cleft palate.

Common Herbicide Creates Reproductive Problems
International researchers link exposure to atrazine – an herbicide widely used in the U.S. and more than 60 other nations – to reproductive problems in animals.

Environment and Diet Leave Imprints On the Heart
DNA methylation in the human heart has revealed the 'missing link' between lifestyle and health, and may indicate methylation creates the equivalent of 5, 6, 7 and 8 bases by modifying Cytosines across our entire genome.

November 28, 2011--------News Archive

Role of Nuclear Membrane Protein in Organ Growth
Scientists had thought B-type lamin proteins were vital to embryonic stem cells; but they are more critical to organ formation.

Hormone Hepcidin May Control Atherosclerosis
Hepcidin is a hormone produced by the liver and regulates iron transport. Blocking its production encourages macrophages to counter atherosclerosis.

Two Enzymes Stamp DNA with "Turn Off" Signal
Inside the cell nucleus, DNA is wound around spool-like proteins called histones. Two modifications in this attachment tell a portion of the DNA to be on or off.

WHO Child Growth Charts


DNA methylation leaves indicators, or "marks", on the genome. There is evidence that these "marks" are strongly influenced by external factors such as environment and diet.

University of Cambridge researchers have found that this process is different in diseased and normal hearts. Linking all these things together suggests a "missing link" between environmental factors and heart failure.

The new data collected greatly benefits a field that is still in its scientific infancy and is a significant leap from where research was, even 18 months ago.

Researcher Roger Foo explains: "By going wider and scanning the genome in greater detail, we now have a clearer picture of the 'fingerprint' of the missing link - where and how epigenetics in heart failure may be changed and the parts of the genome where diet or environment or other external factors may affect outcomes."

The study originally began by investigating the differences in DNA methylation found in the human heart. Researchers compared data from a small number of people with end-stage cardiomyopathy (enlarged heart), who were undergoing heart transplants with the healthy hearts of age-matched, road traffic accident victims.

Study findings deepen our understanding of the genetic changes that can lead to heart disease and how these can be influenced by our diet and our environment. The findings can potentially open new ways for identifying, managing and treating heart disease.

DNA makes up our genes out of four "bases" or nucleotides – cytosine, guanine, adenine and thymie, often abbreviated to C, G, A and T. Methylation is the addition of a methyl group (CH3) to the cytosine base.

When added to cytosine, the methyl group is recognised differently by proteins which alters how the gene is turned on or off, or expressed.

DNA methylation is a crucial part of normal development, allowing different cells to become different tissues despite having the same genes. As well as occuring during development, DNA methylation continues throughout our lives in a response to environmental and dietary changes, which sometimes lead to disease.

As a result of the study, Foo likens DNA methylation to a fifth nucleotide: "We often think of DNA as being composed of four nucleotides. Now, we are beginning to think there is a fifth – the methylated C."

Foo adds: "...and more recent basic studies now show us that our genome has even got 6th, 7th and 8th nucleotides... in the form of further modifications of cytosines. These are hydroxy-methyl-Cytosine, formylCytosine and carboxylCytosine = hmC, fC and caC! These make up an amazing shift in the paradigm…"

As in most studies, as one question is resolved, other mysteries arise. The study shows that we are still on the frontier of epigenetics and are only just beginning to understand the link between the life we lead and the body that results.

Original article:http://www.eurekalert.org/pub_releases/2011-11/uoc-ead112811.php