Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
December 16, 2011--------News Archive

Cancer and Fetal Exposure to Carcinogens
Some cancer, chronic diseasse and neurologic disorders can be attributed to fetal exposure to carcinogens as seen in studies of mice.

Gene Discovered for Weaver Syndrome
Research finds new gene for a rare genetic disorder; and also shows gene mutations in fetus cause syndromes- but same mutation later becomes cancer.

Mom's Asthma Inhaler Risks Child Endocrine Issues
Inhaled glucocorticoids for treating asthma in pregnancy are not associated with increased risk of most diseases in babies, but may increase baby's risk for endocrine and metabolic problems.

December 15, 2011--------News Archive

Progesterone Reduces Neonatal Risk
Women with a short cervix should be treated with vaginal progesterone to prevent preterm birth, according to a landmark study by leading obstetricians worldwide.

The Ability to Love Takes Root in Earliest Infancy
The first 12 to 18 months of life may predict your behavior in romantic relationships 20 years later.

Fetal Trachea Correction Increases Survival
A new study reveals that fetal tracheal occlusion (FETO) improves infant survival rate in severe cases of congenital diaphragmatic hernia (CDH).

December 14, 2011--------News Archive

Vaccine Successfully Attacks Breast Cancer in Mice!
Vaccine may have implications for treating ovarian, colorectal and pancreatic cancer.

Mom Weight Before/During Pregnancy Affects Baby
Both pre-pregnant weight and weight gain in pregnancy can predict babies’ birthweight. And high birthweight may also predict an overweight adult.

FoxC1 Gene Discovered to Maintain a Clear Cornea
Gene found in humans and mice that protects transparency of cornea, may lead to new therapy for some causes of blindness.

December 13, 2011--------News Archive

Animal Empathy, How Is It Different From Human?
Neuroscientist says animal models could open door to human feelings.

Clues to How the Pancreas Develops
A rare genetic disorder has given insight into how the pancreas develops. It may be possible to 'program' stem cells to become pancreatic cells.

Mitosis - Making The Right Copy At The Right Time
Scientists show how cells accurately inherit information gained epigenetically.

December 12, 2011--------News Archive

Gene Therapy Against Hereditary Bleeding Disorder
Gene therapy offers first proof that the treatment benefits adults with hemophilia B, reducing need for clotting factor to prevent bleeds.

What Goes On Behind A Babies Gift of Gab
From the moment they're born, babies are highly attuned to communicate and motivated to interact. And they're great listeners.

Adult Brains Can Continue to Grow With Learning
London's taxi drivers' must pass a test showing they have memorized that city's complex layout of 25,000 streets – causing structural changes in their brains.

WHO Child Growth Charts



Study of gene therapy developed at St. Jude Children’s Research Hospital and University College London offers first proof that the treatment benefits adults with hemophilia B; reduces need for clotting factor to prevent bleeds

Symptoms improved significantly in adults with the bleeding disorder hemophilia B following a single treatment with gene therapy developed by researchers at St. Jude Children’s Research Hospital in Memphis and demonstrated to be safe in a clinical trial conducted at the University College London (UCL) in the U.K.

The findings of the six-person study mark the first proof that gene therapy can reduce disabling, painful bleeding episodes in patients with the inherited blood disorder. Results of the Phase I study appear in the online edition of the New England Journal of Medicine. The research was presented December 11 at the 53rd annual meeting of the American Society of Hematology in San Diego.

Four study participants stopped receiving protein injections to prevent bleeding episodes after undergoing the therapy and have not suffered spontaneous bleeding. Several have also participated in marathons and other activities that would have been difficult prior to gene therapy. The study volunteers were all treated at the Royal Free Hospital in London under the care of Edward G.D. Tuddenham, M.D., Ph.D., a pioneer in the field of blood coagulation and a study co-author.

“This is a potentially life-changing treatment for patients with this disease and an important milestone for the field of gene therapy. It could have ramifications for the treatment of hemophilia A, other protein and liver disorders and chronic diseases such as cystic fibrosis,” said first author Amit Nathwani, M.D., Ph.D., a faculty member at the UCL Cancer Institute, Royal Free Hospital and NHS Blood and Transplant (NHSBT).

Hemophilia B is caused by an inherited mistake in the gene for making a protein called Factor IX, which is essential for normal blood clotting. The gene is carried on the X chromosome. As a result, hemophilia B is almost exclusively a disease of men. About 1 in 30,000 individuals inherit the mutation.

Previous efforts to ease hemophilia B symptoms by introducing a correct copy of the gene have been unsuccessful.

The current study used adeno-associated virus (AAV) 8 as the vector to deliver the Factor IX gene along with additional genetic material into the patient’s liver. AAV8 was picked because the incidence of natural infection with AAV8 is low. It belongs to a family of viruses that target liver cells but do not cause disease in humans or integrate into human DNA. Participants in the study received no immune suppressing drugs prior to gene therapy.

This approach was jointly pioneered by St. Jude and UCL, initially in the laboratory of study co-author Arthur Nienhuis, M.D, a member of the St. Jude Department of Hematology.

For this study, each patient received a one-time infusion of the vector into a vein in the arm. Two patients each were treated with escalating doses of the vector. Following treatment, Factor IX levels rose in all six patients from less than 1 percent of normal levels prior to the gene therapy to between 2 and 12 percent.

Factor IX levels increased the most in the two study volunteers who received the highest dose of the experimental vector, researchers said. After treatment, levels of the protein ranged from 3 to 12 percent in those men. Even modest increases that raise Factor IX production to more than 1 percent of normal levels have the potential to dramatically affect a patient’s quality of life and reduce bleeding episodes, said the study’s senior author Andrew Davidoff, M.D., chair of the St. Jude Department of Surgery.

“The first patient has been followed for the longest time, and his levels have remained at 2 percent for more than 18 months. These results are highly encouraging and support continued research. More patients are scheduled to be enrolled in future trials scheduled to begin later this year,” Davidoff said.

One of the participants who received the highest dose of the vector underwent successful, short-term steroid treatment after his liver enzymes rose slightly after the vector infusion. The rise signalled mild liver damage. The volunteer remained otherwise healthy, his Factor IX levels remain above pre-infusion levels and his liver enzymes have returned to normal. Liver enzymes also rose slightly, but remained in the normal range, for the other participant who received the highest dose of the vector. That participant also received a short course of steroids.

Researchers believe an immune response targeting the vector triggered the elevated enzyme levels. A similar response was reported in earlier gene therapy trials conducted by other investigators using a different vector.

The vector used in this study was produced at the Good Manufacturing Practices (GMP) facility on the St. Jude campus. The GMP operates under U.S. government-approved manufacturing guidelines and produces highly specialized medicines, vaccines and other products that pharmaceutical companies are reluctant to pursue. The vector can also now be produced in a similar facility at UCL.

Other authors are Savita Rangarajan, Basingstoke and North Hampshire Foundation Trust; Cecilia Rosales, Jenny McIntosh and David Linch, all of UCL Cancer Institute; Pratima Chowdary, Anja Griffioen, Anne Riddel, Jun Pie, Chris Harrington and James O’Beirne, all of Royal Free NHS Trust; Keith Smith, NHSBT; John Pasi, Bertie Glader, Pradip Rustagi and Mark May, all of Stanford University; Catherine Y.C. Ng, Junfang Zhou, Yunyu Zpense, Christopher Morton, all of Queen Mary’s School of Medicine, London; James Allay, the late John Coleman, Susan Sleep, John Gray and Ulrike Reiss, all of St. Jude; John Cunningham, University of Chicago; Etiena Basner-Tschakarjan and Federico Mingozzi, both of Children’s Hospital of Philadelphia and Katherine High, of the Howard Hughes Medical Institute and Children’s Hospital of Philadelphia.

In the U.S., the research was funded by the National Institutes of Health, the Assisi Foundation of Memphis and ALSAC. In the U.K. the research was funded in part by The Katherine Dormandy Trust, Medical Research Council, Wellcome Trust, NHS Blood and Transplant and the UCLH/UCL NIHR Biomedical Research Centre.

St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care.
Follow us on Twitter @StJudeResearch

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables.

UCL currently has 24,000 students from almost 140 countries, and more than 8,500 employees. Our annual income is over £800 million.
www.ucl.ac.uk | Follow us on Twitter @uclnews.

Original article: http://www.stjude.org/davidoff-hemophilia-b