Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

January 18, 2012--------News Archive Return to: News Alerts

"...when cells in a cluster cooperate - make sacrifices for the common good - that’s evolutionary”

WHO Child Growth Charts

What Is Your BMI?

       


Biologists Replicate Key Evolution Step

More than 500 million years ago, single-celled organisms on the Earth’s surface began forming multicellular clusters that ultimately became plants and animals. Just how that happened is a question that has eluded evolutionary biologists.

Scientists in the University of Minnesota’s College of Biological Sciences have replicated that key step in the laboratory using natural selection and common brewer’s yeast, which are single-celled organisms. The yeast “evolved” into multicellular clusters that work together cooperatively, reproduce and adapt to their environment – in essence, precursors to life on Earth as it is today.

Their achievement is published in the January 16 issue of Proceedings of the National Academy of Sciences.

It all started about two years ago with a casual comment over coffee that bridging the famous multi-cellularity gap would be “just about the coolest thing we could do,” recall postdoctoral researcher Will Ratcliff and associate professor Michael Travisano, both from the Department of Ecology, Evolution and Behavior.

So they decided to give it a try. Then came the big surprise. It wasn’t actually that difficult. Using yeast cells, culture media and a centrifuge, it only took them one experiment conducted over about 60 days, says Travisano, who is senior author on the PNAS paper.

“I don’t think anyone had ever tried it before,” says lead author Ratcliff. “There aren’t many scientists doing experimental evolution, and they’re trying to answer questions about evolution, not recreate it.”

Despite their modesty, the achievement has earned praise and admiration from evolutionary biologists around the world.

“To understand why the world is full of plants and animals, including humans, we need to know how one-celled organisms made the switch to living as a group, as multicelled organisms,” said Sam Scheiner, program director in the National Science Foundation (NSF)’s Division of Environmental Biology. “This study is the first to experimentally observe that transition, providing a look at an event that took place hundreds of millions of years ago.”

Ratcliff and Travisano gave the scientific community a glimpse of their discovery at a conference last summer and have subsequently been invited to talk about it at other meetings. The PNAS article represents the first time full details about the research have been disclosed. “The article provides us with the first opportunity to show the breadth of evolutionary change that we’ve observed,” Travisano says.

In essence, here’s how the experiments worked. The two chose brewer’s yeast or Saccharomyces cerevisiae, a species of yeast used since ancient times to make bread and beer, because it is abundant in nature and grows easily.

They added it to a nutrient-rich culture media and allowed the cells to grow for a day in test tubes. Then they used a centrifuge to stratify the contents by weight. As the mixture settled, cell clusters landed on the bottom of the tubes faster because they are heavier. They removed the clusters, transferred them to fresh media, and grew them up again. Sixty cycles later, the clusters – now hundreds of cells – looked roughly like spherical snowflakes.

Analysis showed that the clusters were not just groups of random cells that adhered to each other, but related cells that remained attached following cell division. That was significant because it meant they were genetically similar, which promotes cooperation. When the clusters reached a critical size, some cells essentially committed suicide (apoptosis) to allow offspring to separate. The offspring reproduced only after they attained the size of their parents.

“A cluster alone isn’t multiellular,” Ratcliff said. “But when cells in a cluster cooperate, make sacrifices for the common good, and adapt to change, that’s an evolutionary transition to multicellularity.”

In order for multicellular organisms to form, most cells need to sacrifice their ability to reproduce, an altruistic action that favors the whole but not the individual, Ratcliff said. For example, all cells in the human body are essentially a support system that allows sperm and eggs to pass DNA along to the next generation. Thus, multicellularity is by its nature extremely cooperative.

“Some of the best competitors in nature are those that engage in cooperation, and our experiment bears that out,” said Travisano.

Evolutionary biologists have estimated that multicellularity evolved independently in about 25 groups. Travisano and Ratcliff wonder why it didn’t evolve more often in nature, since it’s not that difficult to recreate it in a lab. Considering that trillions of one-celled organisms lived on the Earth for millions of years, it seems as if it should have, Ratcliff said.

Maybe that’s a question they will answer in the future, using the fossil record for thousands of generations of their multicellular clusters, which is stored in a freezer in Travisano’s lab. Since the frozen samples contain multiple lines that independently became multicellular, they can compare them to learn if similar or different mechanisms and genes were responsible in each case, Travisano said.

The research duo’s next steps will be to look at the role of multicellularity in cancer, aging and other critical areas of biology.

“Our multicellular yeast are a valuable resource for investigating a wide variety of medically and biologically important topics,” Travisano said. “Cancer was recently described as a fossil from the origin of multicellularity, which can be directly investigated with the yeast system. Similarly the origins of aging, development, and the evolution of complex morphologies are open to direct experimental investigation that would otherwise be difficult or impossible.”

Funding for the research was obtained in February 2011, with coauthors R. Ford Denison and Mark Borrello, adjunct and associate professors, respectively, in the Department of Ecology, Evolution and Behavior.

Travisano joined the College of Biological Sciences faculty in 2007. The multicellularity discovery adds to his record of "firsts" in experimental evolution over the past 25 years. Before joining the Travisano lab group, Ratcliff earned his Ph.D. at the College of Biological Sciences, with Denison as his adviser. Ratcliff has become something of a rock star on the academic conference circuit, and he won the W.D. Hamilton Award for best student presentation at Evolution 2011, the premier conference for evolutionary biologists.

Original article: http://www1.umn.edu/news/news-releases/2012/UR_CONTENT_370158.html