Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

January 18, 2012--------News Archive Return to: News Alerts

Umbilical stem cells bind with the hormone norephinephrine stimulating formation of oligodendrocytes.

WHO Child Growth Charts

What Is Your BMI?

       


Brain Support Cells from Umbilical Cord Stem Cells

For the first time ever, stem cells from umbilical cords have been converted into other types of cells, which may eventually lead to new treatment options for spinal cord injuries and multiple sclerosis, among other nervous system diseases.

“This is the first time this has been done with non-embryonic stem cells,” says James Hickman, a University of Central Florida bioengineer and leader of the research group.

The paper appears in the Jan. 18 issue of the journal ACS Chemical Neuroscience.

“We’re very excited about where this could lead because it overcomes many of the obstacles present with embryonic stem cells.”

Stem cells from umbilical cords do not pose an ethical dilemma because the cells come from a source that would otherwise be discarded. Another major benefit is that umbilical cells generally have not been found to cause immune reactions, which would simplify their potential use in medical treatments.

The pharmaceutical company Geron, based in Menlo Park, Calif., developed a treatment for spinal cord repair based on embryonic stem cells, but it took the company 18 months to get approval from the FDA for human trials due in large part to the ethical and public concerns tied to human embryonic stem cell research. This and other problems recently led to the company shutting down its embryonic stem cell division, highlighting the need for other alternatives.

Sensitive Cells
The main challenge in working with stem cells is figuring out the chemical or other triggers that will convince them to convert into a desired cell type. When the new paper’s lead author, Hedvika Davis, a postdoctoral researcher in Hickman’s lab, set out to transform umbilical stem cells into oligodendrocytes – critical structural cells that insulate nerves in the brain and spinal cord – she looked for clues from past research.

Davis learned that other research groups had found components on oligodendrocytes that bind with the hormone norephinephrine, suggesting the cells normally interact with this chemical and that it might be one of the factors that stimulates their production. So, she decided this would be a good starting point.

In early tests, she found that norepinephrine, along with other stem cell growth promoters, caused the umbilical stem cells to convert, or differentiate, into oligodendrocytes. However, that conversion only went so far. The cells grew but then stopped short of reaching a level similar to what’s found in the human nervous system.

Davis decided that, in addition to chemistry, the physical environment might be critical.

To more closely approximate the physical restrictions cells face in the body, Davis set up a more confined, three-dimensional environment, growing cells on top of a microscope slide, but with a glass slide above them. Only after making this change, and while still providing the norephinphrine and other chemicals, would the cells fully mature into oligodendrocytes.

“We realized that the stem cells are very sensitive to environmental conditions,” Davis said.

Medical Potential
This growth of oligodendrocytes, while crucial, is only a first step to potential medical treatments. There are two main options the group hopes to pursue through further research. The first is that the cells could be injected into the body at the point of a spinal cord injury to promote repair.

Another intriguing possibility for the Hickman team’s work relates to multiple sclerosis and similar conditions. “Multiple sclerosis is one of the holy grails for this kind of research,” said Hickman, whose group is collaborating with Stephen Lambert at UCF’s medical school, another of the paper’s authors.

Oligodendrocytes produce myelin, which insulates nerve cells, making it possible for them to conduct the electrical signals that guide movement and other functions. Loss of myelin leads to multiple sclerosis and other related conditions such as diabetic neuropathy.

The injection of new, healthy oligodendrocytes might improve the condition of patients suffering from such diseases. The teams are also hoping to develop the techniques needed to grow oligodendrocytes in the lab to use as a model system both for better understanding the loss and restoration of myelin and for testing potential new treatments.

“We want to do both,” Hickman said. “We want to use a model system to understand what’s going on and also to look for possible therapies to repair some of the damage, and we think there is great potential in both directions.”

Besides Hickman and Davis, the other authors on the paper were Xiufang Guo, Stephen Lambert, and Maria Stancescu, all from the University of Central Florida.

Original article: http://today.ucf.edu/a-first-brain-support-cells-from-umbilical-cord-stem-cells/