Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 1, 2012--------News Archive Return to: News Alerts

This illustration shows the traditional view of RNA making proteins,
left; how small RNA interferes with protein production
center; and how Tang's team interfered with the process
by introducing a man-made gene to the mix.
Guiliang Tang illustration

WHO Child Growth Charts

What Is Your BMI?

       

Turning off Small RNA to Break Epigenetic Code

A scientific team has developed a way to turn off small RNAs and found out just how important they are

by Marcia Goodrich

For the last dozen years, scientists have known that minuscule strings of genetic material called small RNA are critically important to our genetic makeup. But finding out what they do hasn’t been easy.

When it comes to inheritance, DNA is just the half of it. What we are is also driven by the epigenetic world of RNA: the countless, twisting molecules that DNA churns out. RNA in turn transforms the amino acid soup in our cells into the proteins that are us—and every other plant and animal on the planet, for that matter.

There’s more than one kind of RNA, however. In addition to the long strings that make proteins, there are short, meddling snippets called small RNAs. Sometimes, they can attach to long RNA molecules and break them in two. That obviously has consequences for the organism, but exactly what role the thousands of different small RNAs play has been a puzzle.

Now, Guiliang Tang, an associate professor of biological sciences, has developed a way to put a single small RNA out of commission and observe what happens when it can’t do its job.

To do this, Tang and his team threw a wrench into a well-understood process that controls leaf symmetry and the tendency of plants to grow upright.

First they synthesized a sequence of DNA that would make a custom-designed type of small RNA, called a small tandem target mimic, or STTM (see Figure). Then they introduced their synthetic DNA in Arabidopsis, a plant often used in genetics research. Once in the Arabidopsis, the synthetic DNA began manufacturing many copies of the STTM.

Then all the little STTMs began locking onto strands of a specific type of RNA, right where the plant’s small RNA would normally have cut them in two. That blocked its action, so the long RNA strands remained intact.

Furthermore, the procedure prompted the cell to destroy all of its own small RNAs that would normally have cut the RNA. Together, those two mechanisms allowed the long RNA to make its protein unabated.

The results were dramatic. The control Arabidopsis plants grew upward on a central stem with regularly shaped leaves and stems. The mutant plants were smaller, tangled, and amorphous.

Their method isn’t limited to one small RNA involved in leaf symmetry inArabidopsis.

“You can use this to study the function of any small RNA in the cell,” says Tang.

In an online commentary, Plant Cell senior features editor Nancy Eckardt called their method “a highly effective and versatile tool” for studying the functions of small RNA.

Now, Tang hopes to find out how and why this procedure causes cells to destroy small RNA. And his wife and fellow researcher Xiaoqing Tang, an assisant professor of biological sciences, plans to use this technology to better understand type 2 diabetes.

The work is funded by the National Science Foundation and described in the article “Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis,” published Feb. 16 online in the journal Plant Cell. The lead authors of the paper are students who worked with Tang: Jun Yan, now a postdoctoral researcher at Purdue University, and Yiyou Gu, now an undergraduate at Nanjing Agricultural University, in China. Other coauthors are Xiaoyun Jia, Wenjun Kang and Shangjin Pan of the University of Kentucky and Xuemei Chen of the University of California at Riverside.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Original article: