Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 6, 2012--------News Archive Return to: News Alerts

Left: Hydra have the same visual pathway as humans.
Right:Their tentacles contain stinging cells (shown here
in red) that aid in movement, defense, and predation.
Credit: David Plachetzki.

WHO Child Growth Charts

What Is Your BMI?

       

Research Discovera Genetic Link Between Hydras and Humans

Even in the absence of eyes altogether, some creatures display a light-sensitivity that uses the same visual pathway allowing humans to see

What good is half an eye? Evolutionary biologists studying the origins of vision get that question a lot, and new research out of UC Santa Barbara points to a possible answer.

Findings appear in the journal BMC Biology.

Todd Oakley, professor in UCSB's Department of Ecology, Evolution, and Marine Biology, co-authored the paper about the genetic behavior of hydra, a freshwater polyp. Along with jellyfish, sea anemones, and corals, hydra are part of the animal family Cnidaria, who use stinging cells, or cnidocytes, to catch prey. Hydra tentacles contain barbed, poison-containing cnidocytes that they use to stun animals, such as water fleas and plankton, before eating them alive. They also use their cnidocytes for self-defense and locomotion.

The research conducted at UCSB revealed that light, or the lack thereof, has a direct effect on hydras' propensity to fire their stinging cells –– a discovery Oakley said "tells us something completely new about the biology of these animals, and we think this could extend to other cnidarians."

"Hydra stinging cells were already known to be touch sensitive and taste sensitive, but no one had ever thought before to look for light sensitivity –– probably because they don't have eyes," Oakley said. "We're the first to have found that. And we found not only that light-sensitivity genes are expressed near hydra stinging cells, but that under different light conditions, these cells have different propensities to be fired."

Studying the hydra in both bright and dim conditions, the researchers discovered that bright light actually inhibits the firing of the stinging cells –– possibly because their prey are more active at dusk and after sunset, said Oakley. He suggested that light could be acting as "a daily, rhythmic cue" that tells hydra when, and when not, to sting.

The research found that the light-sensitive protein opsin in sensory cells regulates the firing of the hydra's harpoon-like cnidocytes. These same cells are found in the mechanisms hydra use to grasp prey, and to summersault through the water.

The linking of opsin to the stinging cells helps explain how hydra can respond to light despite the absence of eyes, the scientists said, because the sensory neurons also contain the ion channels and additional proteins required for phototransduction –– the process by which light is converted to electric signals. Phototransduction in humans occurs in the retina.

"I wouldn't call this vision, because as far as we know the hydra are not processing information beyond what's light and what's dark, and vision is much more complicated than that. But these genes that we're studying are the keystones of vision," Oakley said. "For us, as evolutionists, the message is that photoreception can do other things besides just facilitate vision. It can do unexpected things. What good is half an eye? Even without eyes there are other functions for light sensitivity that we may not be thinking of."

Oakley collaborated on the paper with David Plachetzki, a UCSB graduate student when the study was conducted, but now a postdoctoral fellow at UC Davis, and former UCSB undergrad Caitlin Fong.

Original article: http://www.eurekalert.org/pub_releases/2012-03/uoc--usb030512.php