Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 8, 2012--------News Archive Return to: News Alerts

Left: Female human X chromosome
Right: Male human Y chromosome

WHO Child Growth Charts

What Is Your BMI?

       

Men Respond More Aggressively than Women to Stress

The role of the SRY gene is critical in male fight-or-flight response

The pulse quickens, the heart pounds and adrenalin courses through the veins, but in stressful situations is our reaction controlled by our genes, and does it differ between the sexes? Australian scientists, writing in BioEssays, believe the SRY gene, which directs male development, may promote aggression and other traditionally male behavioural traits resulting in the fight-or-flight reaction to stress.

Research has shown how the body reacts to stress by activating the adrenal glands which secrete catecholamine hormones into the bloodstream and trigger the aggressive fight-or-flight response. However, the majority of studies into this process have focused on men and have not considered different responses between the sexes.

"Historically males and females have been under different selection pressures which are reflected by biochemical and behavioural differences between the sexes," said Dr Joohyung Lee, from the Prince Henry's Institute in Melbourne. "The aggressive fight-or-flight reaction is more dominant in men, while women predominantly adopt a less aggressive tend-and-befriend response."

Dr Lee and co-author Professor Vincent Harley, propose that the Y-chromosome gene SRY reveals a genetic underpinning for this difference due to its role in controlling a group of neurotransmitters known as catecholamines. Professor Harley's earlier research had shown that SRY is a sex-determining gene which directs the prenatal development of the testes, which in turn secrete hormones which masculinise the developing body.

"If the SRY gene is absent the testes do not form and the foetus develops as a female. People long thought that SRY's only function was to form the testes" said Professor Harley. "Then we found SRY protein in the human brain and with UCLA researchers led by Professor Eric Vilain, showed that the protein controls movement in males via dopamine."

"Besides the testes, SRY protein is present in a number of vital organs in the male body, including the heart, lungs and brain, indicating it has a role beyond early sex determination," said Dr Lee. "This suggests SRY exerts male-specific effects in tissues outside the testis, such as regulating cardiovascular function and neural activity, both of which play a vital role in our response to stress."

The authors propose that SRY may prime organs in the male body to respond to stress through increased release of catecholamine and blood flow to organs, as well as promoting aggression and increased movement which drive fight-or-flight in males. In females oestrogen and the activation of internal opiates, which the body uses to control pain, may prevent aggressive responses.

The role of SRY regulation of catecholamines also suggests the gene may have a role in male-biased disorders such as Parkinson's disease.

"New evidence indicates that the SRY gene exerts 'maleness' by acting directly on the brain and peripheral tissues to regulate movement and blood pressure in males," concluded Lee. "This research helps uncover the genetic basis to explain what predisposes men and women to certain behavioural phenotypes and neuropsychiatric disorders."

Original article: http://www.eurekalert.org/pub_releases/2012-03/w-mrm030512.php