Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 15, 2012--------News Archive Return to: News Alerts

WHO Child Growth Charts

What Is Your BMI?

       

Teaching Fat Cells to Burn Calories

While investigating a common human diabetes drug in mice, a team discovered the protein called PRDM16, found in humans and mice, can throw a switch on white fat cells to convert them into calorie-burning brown fat cells

by Jason Bardi

In the war against obesity, one’s own fat cells may seem an unlikely ally, but new research from the University of California, San Francisco (UCSF) suggests ordinary fat cells can be reengineered to burn calories.

A UCSF team has discovered that a protein called PRDM16, found in both men and mice, can throw a switch on fat cells, converting them from ordinary calorie-storing white fat cells into calorie-burning brown fat cells.

This discovery makes PRDM16 a possible target for future obesity drugs. Compounds that promote the action of this protein may help people burn calories faster. Though they would have to prove safe and effective in the clinic, such compounds would represent a completely different approach to weight loss. Existing diet drugs aim to restrict the intake of calories — by blocking the absorption of fat in the gut, for instance, or by decreasing appetite.

“If you think about the energy balance, the other way to tackle obesity is through energy expenditure,” said Shingo Kajimura, PhD, who led the research in the UCSF Diabetes Center and the Department of Cell & Tissue Biology in the UCSF School of Dentistry. The work is published this week in the journal http://www.cell.com/cell-metabolism/retrieve/pii/S1550413112000502

Where Brown Fat Comes From
Scientists believe that brown fat originally evolved in early mammals as a defense against the cold. It helps them maintain their body temperature and thrive in the face of challenging environmental extremes. Not all animals share this ability.

Many animals, like lizards, are “cold blooded” or exothermic. They maintain their body temperature through completely external means, sunbathing at certain times of the day and huddling in warm, protective places at night. This naturally limits their range and explains why lizards, so abundant in tropical climates, are far rarer in cold climates.

“Warm-blooded” mammals, on the other hand, are endothermic. They produce heat internally by a variety of means: shivering, sweating and regulating the size of their blood vessels. Brown fat also contributes by burning fatty acids, which heats the blood coursing nearby, and in turn warms the body.

Though scientists once thought new brown fat was only made in babies, we now know that the human body is capable of creating new brown fat cells throughout life. And in recent years, doctors also have discovered the amount of brown fat in the body is inversely proportional to the likelihood of obesity — the more brown fat people have, the less chance they are obese.

The possibility of exploiting brown fat for weight loss became tantalizing after clinical evidence showed that certain drugs could alter the amount of brown fat a person has. In particular, a common class of drugs given to people with diabetes called PPAR-gamma ligands has been shown to increase brown fat. But scientists never understood why.

Now Kajimura and his UCSF colleagues have demonstrated how it works. In their research, they showed that PPAR-gamma interacts with the protein PRDM16, making it more stable and leading to its accumulation inside cells. This essentially throws a genetic switch and converts the white fat cells to brown — at least in mice.

The question remains whether it is possible to do this in people as well, and if so, how. While new drugs that target this protein may be years away, knowing the target may speed their development, Kajimura said.

The question is no longer how do we make brown fat, he added. Instead it now becomes a more specific question: “Can we simply stabilize this protein?”

The article, “PPAR-gamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein" by Haruya Ohno, Kosaku Shinoda, Bruce M. Spiegelman, and Shingo Kajimura appears in the March 7, 2012 issue of the journal Cell Metabolism.

This work was funded by the National Institute of Diabetes and Digestive and Kidney Diseases, one of the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Original article: http://www.ucsf.edu/news/2012/03/11627/teaching-fat-cells-burn-calories