Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 19, 2012--------News Archive Return to: News Alerts

Scientists have gained insight into how second-hand tobacco smoke
damages the earliest stages of human embryonic development.

WHO Child Growth Charts

What Is Your BMI?

       

Tobacco Smoke Affects Early Human Embryo Development

Scientists have gained insight into how second-hand tobacco smoke damages the earliest stages of human embryonic development

by Jennifer O'Brien

A UCSF-led team has made its discovery by studying the impact of smoke on human embryonic stem cells as they differentiated, or specialized into various cell types, in the culture dish.

They determined that both nicotine and non-nicotine components of tobacco smoke impede the cells from specializing into a broad range of cell types, including those of the blood, heart, musculoskeletal systems and brain.

Their paper is published in Science Direct.

They also established that at least some of the impact was mediated through several molecular pathways known to play a role in differentiation.In one of the pathways, the toxins dramatically increased the activity of a key gene that keeps embryonic stem cells in an undifferentiated state, suggesting that its disruption might be responsible for much of the delay seen in embryonic development.

Scientists already know that in utero exposure to tobacco smoke increases the risk of a child being born pre-term and underweight, conditions associated with an increased risk of respiratory distress syndrome, cardiovascular defects, cleft lip and palate, immunodeficiency and Sudden Infant Death Syndrome. They also know that exposure is associated with increased risk of childhood leukemia, lymphoma and brain tumors, and, later in life, attention deficit and hyperactivity disorders, as well as other behavioral and psychological problems.

However, until now, they’ve known little about the underlying molecular mechanisms responsible for these pathologies. The study, reported in the April issue of Differentiation, provides some of the first hard evidence.

“We know second-hand smoke exposure is bad for the developing fetus, causing everything from heart defects to childhood cancer, but we haven’t understood why,” said senior author Harold S. Bernstein, MD, PhD, who is a UCSF professor of pediatrics and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. “We hope the findings will be a launching pad for further investigations on the impact on fetal development at the cellular level.”

In the study, led by Water Liszewski, who was at the time a technician in the Bernstein lab, the scientists took a two-pronged approach.

First, they extended the analysis of gene activity in umbilical cord stem cells previously examined by their University of Connecticut co-authors, determining that tobacco smoke increased the activity of genes that delay the development of mesoderm – the layer of tissue that gives rise to blood, musculoskeletal and cardiovascular systems – as well endoderm and ectoderm, the two other layers of embryonic cells that give rise to the tissues of the body.

Next, they exposed human embryonic stem cells in the culture dish either to tobacco smoke or nicotine at concentrations found in fetal blood. They did so while the cells were spontaneously specializing.

Then, using microarray analysis, quantitative polymerase chain reaction (PCR) and immunoblot analysis, they assessed gene activity at key time points in the process of specialization.

They discovered that both nicotine and non-nicotine components of tobacco smoke increased the activity of genes that hold embryonic stem cells in a pluripotent, or undifferentiated, state. They also showed that the toxins increased activity of genes that delay the development of the three germ layers.

Finally, they assessed gene expression in three stem cell differentiation pathways, known as Notch, canonical Wnt and TGFß.

They determined that sentinel genes in each pathway were over expressed, but one more than the others: expression of the Nodal gene was 50- to 75-fold higher in nicotine and tobacco smoke-exposed cells, respectively, than in untreated cells.

The findings reveal the widespread impact of both nicotine and non-nicotine components of tobacco smoke on early embryonic development, according to Bernstein.

They also highlight the power of human embryonic stem cells as a model of human development. “They allowed us to get at questions which, until now, we couldn’t examine in humans,” he said.

First author Liszewski currently is a second-year medical student at Tulane University School of Medicine. Other co-authors of the study are Carissa Ritner, Julian Aurigui, Sharon S.Y. Wong of UCSF, and Naveed Hussain, Winfried Krueger and Cheryl Oncken of the University of Connecticut.

The study was supported by funds from the Connecticut Department of Health and the University of Connecticut General Clinical Research Center, a grant from the National Heart, Lung and Blood Institutes, a gift from the Polin Foundation, and funds from the Department of Pediatrics, University California, San Francisco.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Original article: http://www.ucsf.edu/news/2012/03/11673/tobacco-smoke-affects-early-human-embryonic-development