Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

March 26, 2012--------News Archive Return to: News Alerts

This is a microscopic image from the mouse embryonic stem cell metabolism study in Seattle.

WHO Child Growth Charts

What Is Your BMI?

       

Embryo Stem Cells Shift Metabolism in Cancer-Like Way Upon Implanting in Uterus

Switch may release fuel and materials for rapid growth and formation of layers that later become organs

Shortly after a mouse embryo starts to form, some of its stem cells undergo a dramatic metabolic shift to enter the next stage of development, Seattle researchers report today. These stem cells start using and producing energy like cancer cells.

This discovery is published today in EMBO, the European Molecular Biology Organization journal.

"These findings not only have implications for stem cell research and the study of how embryos grow and take shape, but also for cancer therapy," said the senior author of the study, Dr. Hannele Ruohola-Baker, University of Washington professor of biochemistry. The study was collaborative among several research labs in Seattle.

The metabolic transition they discovered occurs very early as the mouse embryo, barely more than a speck of dividing cells, implants in the mother's uterus. The change is driven by low oxygen conditions, Ruohola-Baker explained.

The researchers also saw a specific type of biochemical slowdown in the stem cells' mitochondria – the cells' powerhouses. The phenomenon previously was associated with aging and disease. This was the first example of the same downshift controlling normal early embryonic development.

"This downshift coincides with the time when the germ line, the keeper of the genome for the next generation, is set aside," Ruohola-Baker said.. "Hence reduction of mitochondrial reactive oxygen species may be nature's way to protect the future."

Embryonic stem cells are called pluripotent because they have the ability to renew themselves and have the potential to become any cell in the body. Self-sustaining and versatile are qualities necessary for the growth, repair and maintenance of the body – and for regenerative medicine therapies.

Although they share these sought-after qualities, "Pluripotent stem cells come in several flavors," Ruohola-Baker explained. They differ in subtle ways that expand or shrink their capacities as the raw living material from which animals are shaped.

There's a big reason why the researchers wanted to understand the distinction between the stem cells that make up the inner cell mass of the free-floating mouse embryo, and those in the epiblast, or implantation stage. Mouse embryonic cells at the epiblast stage more closely resemble human embryonic stem cells -- and cancer cells.

Human stem cells and mouse epiblast stem cells have lower mitochondrial respiration activity than do earlier stage mouse stem cells. This reduction occurs despite the fact that the later stage stem cells have more mature mitochondria. The researchers confirmed that certain genes that control mitochondria are turned down during the transition from inner cells mass to epiblast cells.

Instead, the transitioning cells obtain their energy exclusively from breaking down a sugar, glucose. In contrast, the earlier stage mouse embryonic stem cells have more energy options, dynamically switching from mitochondrial respiration to glucose breakdown on demand.

As the embryo enlarges from a few dividing cells to a dense mass that buries into uterus for further development, oxygen comes at a premium.

The researchers discovered that the low-oxygen conditions activate a transcription factor called hypoxia-inducible factor 1alpha. This factor is sufficient to drive mouse embryonic stem cells to rely exclusively on glucose metabolism for their energy. The next challenge is to reveal whether the metabolic switch is deterministic for the fate of these stem cells, in normal as well as in cancer development.

This forced metabolic switch may determine the functional fate of some of the tiny mass of cells making up the primordial embryo. They transition first into epiblast stem cells and, afterward produce the entire developing embryo.

In cancer cells, the shift to a sugar-busting metabolism is known as the Warburg effect, the researchers explain. The Warburg effect sets in motion the biochemical activities that provide the fuel and materials required for rapid tumor cell growth and division.

The Warburg effect in embryonic cells, the researcher propose: "may serve a similar function in preparation for the dramatic burst of embryonic growth and for the formation of the layers of the early embryo that later will become organs and other body structures."

The study was supported by grants from the National Institutes of Health.

In addition to Ruohola-Baker, other scientists on this project were Wenyu Zhou, of the UW Department of Biology; Michael Choi of the UW Department of Biochemistry; Daciana Margineantu of the Fred Hutchinson Cancer Research Center; Lilyana Margaretha of the UW Molecular and Cellular Biology Program; Jennifer Hesson, Christopher Cavanaugh and Carol Ware, all from the UW Department of Comparative Medicine; C. Anthony Blau of the UW Department of Medicine, Division of Hematology; Marshall S. Horwitz of the UW Department of Pathology; and David Hockenberry of the Fred Hutchinson Cancer Research Center. All but two of the scientists on this study are members of the UW Institute for Stem Cell and Regenerative Medicine.

Original article: http://www.eurekalert.org/pub_releases/2012-03/uow-esc032312.php