Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

April 11, 2012--------News Archive Return to: News Alerts

In the future, we may be able to create more precise vaccines by educating body cells
to identify dead and damaged cells and stimulate the immune system to intervene.

WHO Child Growth Charts

What Is Your BMI?

       

Manipulating the Immune System to Develop 'Next-Gen' Vaccines

A protein found on the surface of immune - dendritic - cells recognises dangerous damage and trauma that could signify infection.

The discovery of how a vital immune cell recognises dead and damaged body cells could modernise vaccine technology by 'tricking' cells into launching an immune response, leading to next-generation vaccines that are more specific, more effective and have fewer side-effects.

Scientists from the Walter and Eliza Hall Institute have identified, for the first time, how a protein found on the surface of immune cells called dendritic cells recognises dangerous damage and trauma that could signify infection.

Dendritic cells are critical for raising the alarm about the presence of foreign invaders in the body such as viruses, bacteria and parasites as well as tumour cells and other dead or damaged cells. Also known as antigen-presenting cells, they digest and present molecules from damaged cells to other immune cells that recognise foreign invaders and launch an immune response.

The research was a collaborative effort that involved a team of immunologists, protein chemists and structural biologists. The research team was led by Dr Mireille Lahoud, Dr Jian-Guo Zhang, Dr Peter Czabotar and Professor Ken Shortman.

Dr Lahoud said the study, published today in the journal Immunity, demonstrated that the immune system has evolved a very clever way of detecting damaged and dead cells to help promote an immune response.

"Dr Irina Caminschi and I previously identified a protein called Clec9A (C-type lectin domain family 9A) that sits on the surface of specialised types of dendritic cells and responds to damaged and dying cells," Dr Lahoud said. "In this study we discovered that Clec9A recognises and binds to fibres of actin, internal cell proteins that are found in all cells of the body. Actin is only exposed when the cell membrane is damaged or destroyed, so it is an excellent way of finding cells that could harbour potentially dangerous infections and exposing them to the immune system."

Professor Shortman said that exploiting Clec9A could be used to generate a new, more modern class of vaccines that are more effective and have fewer side-effects.

"The Clec9A protein is one of the best targets currently known for improving immune responses," he said. "By creating vaccines that bind to Clec9A, we can trick dendritic cells to think they have encountered a damaged cell and help to launch an immune response to the infectious agent of our choice."

Professor Shortman said targeting Clec9A could decrease the amount of vaccine needed by 100 to 1000 times.

"Traditional vaccine technology for generating immunity, such as using inactivated whole viruses or parasites for immune recognition, requires large amounts of vaccine in the hopes it will encounter the correct immune cells, and incorporates other substances (adjuvants) that are needed to signal to the immune system that something foreign is happening. We are proposing a new type of vaccine that we know will head directly to the right cell to help stimulate an immune response, and doesn't cause the same side-effects because it is more specific," Professor Shortman said.

Dr Lahoud said that the finding could develop or increase the efficacy of vaccines for diseases that do not currently have good preventive options, such as malaria, or HIV.

"There is also the possibility that the system could be used to develop therapeutic vaccines for treating diseases, such as some forms of cancer, as well as for preventing them," she said.

Since completing this research, Dr Lahoud and Dr Caminschi have accepted positions at the Burnet Institute.

This work was supported by the National Health and Medical Research Council of Australia, the Australian Research Council and the Victorian Government.

Original article: http://www.wehi.edu.au/site/latest_news/manipulating_the_immune_
system_to_develop_next-gen_vaccines