Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home--History--Bibliography- -Pregnancy Timeline- Prescription Drugs/Pregnancy- Pregnancy Calculator - Reproductive System- -News Alerts

April 20, 2012--------News Archive Return to: News Alerts

Classic games, such as ‘Prisoner's Dilemma,’ encapsulate human social interaction.
50 simple computer brains with up to 10 internal processing and 10 associated memory nodes, were allowed to evolve freely playing games, and demonstrated
a strong selection for bigger, cooperative brains.


WHO Child Growth Charts

What Is Your BMI?

       

Social Interaction/Teamwork Leads to Human Intelligence

Evolution of intelligence and larger brain sizes can be driven by cooperation and teamwork

Scientists have discovered proof that the evolution of intelligence and larger brain sizes can be driven by cooperation and teamwork, shedding new light on the origins of what it means to be human.

The study appears online in the journal Proceedings of the Royal Society B and was led by scientists at Trinity College Dublin: PhD student, Luke McNally and Assistant Professor Dr Andrew Jackson at the School of Natural Sciences in collaboration with Dr Sam Brown of the University of Edinburgh.

The researchers constructed computer models of artificial organisms, endowed with artificial brains, which played each other in classic games, such as the ‘Prisoner's Dilemma’, that encapsulate human social interaction. They used 50 simple brains, each with up to 10 internal processing and 10 associated memory nodes. The brains were pitted against each other in these classic games.

The game was treated as a competition, and just as real life favors successful individuals, so the best of these digital organisms - which was defined as how high they scored in the games, less a penalty for the size of their brains - were allowed to reproduce and populate the next generation of organisms.

By allowing the brains of these digital organisms to evolve freely in their model the researchers were able to show that the transition to cooperative society leads to the strongest selection for bigger brains. Bigger brains essentially did better as cooperation increased.

The social strategies that emerge spontaneously in these bigger, more intelligent brains show complex memory and decision making. Behaviours like forgiveness, patience, deceit and Machiavellian trickery all evolve within the game as individuals try to adapt to their social environment.

“The strongest selection for larger, more intelligent brains, occurred when the social groups were first beginning to start cooperating, which then kicked off an evolutionary Machiavellian arms race of one individual trying to outsmart the other by investing in a larger brain. Our digital organisms typically start to evolve more complex ‘brains’ when their societies first begin to develop cooperation.” explained Dr Andrew Jackson.

The idea that social interactions underlie the evolution of intelligence has been around since the mid-70s, but support for this hypothesis has come largely from correlative studies where large brains were observed in more social animals.

The authors of the current research provide the first evidence that mechanistically links decision making in social interactions with the evolution of intelligence. This study highlights the utility of evolutionary models of artificial intelligence in answering fundamental biological questions about our own origins.

“Our model differs in that we exploit the use of theoretical experimental evolution combined with artificial neural networks to actually prove that yes, there is an actual cause-and-effect link between needing a large brain to compete against and cooperate with your social group mates."

"Our extraordinary level of intelligence defines mankind and sets us apart from the rest of the animal kingdom. It has given us the arts, science and language, and above all else the ability to question our very existence and ponder the origins of what makes us unique both as individuals and as a species," concluded PhD student and lead author Luke McNally.

Original article: http://www.tcd.ie/Communications/news/pressreleases/
pressRelease.php?headerID=2424&pressReleaseArchive=2012