Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
33333333333333333333333
Google Search artcles published since 2007
 
May 27, 2011--------News Archive

Predicting Diabetes 7 Years Before Pregnancy
A woman's risk of developing diabetes during pregnancy can be identified up to seven years before she is pregnant based on routine blood sugar and weight.

Caffeine Can Reduce Fertility In Women
Caffeine reduces muscle activity in the fallopian tubes which should move eggs from a woman's ovaries into her womb.


May 26, 2011--------News Archive

Take Prenatal Vitamins Early And Reduce Autism
Women who reported not taking a daily prenatal vitamin immediately before and during the first month of pregnancy were nearly twice as likely to have a child with an autism spectrum disorder.

High-Fat Pregnancy Diet Programs Child for Diabetes
A high-fat diet during pregnancy can program a woman's baby for future diabetes, even if she herself is not obese or diabetic.


May 25, 2011--------News Archive

New Insight Into Obesity and Metabolic Disorders
Focussing on endoplasmic reticulum reverses Type 2 diabetes in mice.

New Drug Stops Aggressive Childhood Leukemia
Investigators have been able to overcome a form of leukemia through targeted therapy, completly eradicating the cancer in cell and animal studies.


May 24, 2011--------News Archive

New Genetic Testing Technology for IVF Embryos
Johns Hopkins School of Medicine has devised a technique to help couples have in vitro fertilized babies free of genetic disease and chromosomal abnormalities.

A New Program for Neural Stem Cells
Max Planck Institute scientists have just produced central nervous system cells from neural stem cells taken from the peripheral nervous system.


May 23, 2011--------News Archive

The Mosh Pit of Cell Movement
Physical forces that guide how cells migrate - how they get from place to place inside the living body - are a mess.

Understanding and Treating Brittle Bones
Hope for developing new treatment of bone density mutations leading to such conditions as osteoporosis in adults and osteogenesis imperfecta in children.

Anesthesiologists' Affect On Maternal Fetal Outcome
A first-of-its-kind study exploring how anesthesiologists are perceived by labor and delivery colleagues.

Understanding How Retinas Develop
Using inbred mice, scientists have identified where genes contribute to cone photoreceptor development.

WHO Child Growth Charts

In a significant breakthrough, investigators at Weill Cornell Medical College and the University of California, San Francisco, have been able to overcome resistance of a form of leukemia to targeted therapy, demonstrating complete eradication of the cancer in cell and animal studies.

Their study, published in the May 19 issue of Nature, shows that an investigational drug, RI-BPI, developed at Weill Cornell, in combination with the drug Gleevec shut down stem cells responsible for about one-third of acute lymphoblastic leukemia (ALL), a cancer of white blood cells that affects young children as well as older adults.

This form of ALL has the so-called Philadelphia chromosome, which is also found in chronic myelogenous leukemia (CML). But while Gleevec has greatly improved survival in CML, it has had a less dramatic effect in ALL, and most patients still die within a relatively short timeframe.

That desperate prognosis may radically change given these results, says co-senior investigator Dr. Ari Melnick, associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College, and a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

"I am surprised, and extremely glad, to see that RI-BPI has such strong activity in a leukemia. This opens up the possibility that the agent will have similar beneficial effects in other tumor types," says Dr. Melnick.

Dr. Melnick and his colleagues developed RI-BPI and they have shown its potent effects in non-Hodgkin's lymphoma (NHL) with no toxicity to normal cells. The drug targets the transcription factor BCL6, a master regulator of hundreds of genes that provides strong growth signals to NHL cells.

The new study demonstrated that BCL6 is also active in ALL driven by the Philadelphia chromosome (Ph+ ALL), and that a combination of RI-BPI and Gleevec virtually shuts the cancer down, says Dr. Melnick. After a long search for the source of Gleevec resistance in this form of ALL by the team at the University of California, San Francisco (UCSF), it appears that BCL6 is the fundamental mediator of that resistance, he explains.

"This gives us an opportunity to target Gleevec resistance, something that has the potential to substantially improve outcomes for patients with this disease."

The UCSF research team discovered that production of BCL6 is turned on after administration of Gleevec in Ph+ ALL. UCSF investigators then initiated collaborative research with Dr. Melnick, who provided RI-BPI and conducted experiments on how BCL6 regulates genes in leukemia cells.

The UCSF team also conducted animal tests and discovered that BCL6 hits the stem cells that give rise to ALL. "These stem cells continually repopulate disease cells by making copies of themselves," Dr. Melnick says. "We believe RI-BPI counteracts the BCL6 gene regulatory program that these stem cells need to survive.

"BCL6 turns off the brakes that normally limit cancer growth, which is why Gleevec does not work in this cancer, but RI-BPI puts those brakes back on," he says.

The study also suggests that transcription factors like BCL6 may be less impervious than once thought to targeted treatment, Dr. Melnick says. BCL6 is a protein, and it "mediates its cancer-causing actions by attaching to other proteins. Traditionally, however, protein-protein interactions have been viewed as being too difficult to block with small-molecule drugs."

Although it has yet to be tested in refractory CML -- CML that has become resistant to Gleevec, which occurs in most patients over time -- it makes sense that RI-BPI could restore Gleevec sensitivity, Dr. Melnick adds.

"From this study and from the others in my lab, I have become very impressed with how reliant tumor cells are on certain proteins for their survival," he says. "If we can hit several of these brittle and dependent processes, we have the chance to eradicate cancer."

Based on this study, a clinical trial is being developed to treat children with Ph+ ALL with a combination of RI-BPI.

The study was supported by grants from the National Institutes of Health/National Cancer Institute, the Leukemia and Lymphoma Society, the California Institute for Regenerative Medicine, the William Laurence and Blanche Hughes Foundation, and an American Association for Cancer Research Stand Up To Cancer Innovative Research Grant.

The study's co-senior investigator is Dr. Markus Müschen, a professor of laboratory medicine at UCSF. The lead author is Dr. Cihangir Duy of UCSF. Co-authors include, from Weill Cornell Medical College: Dr. Leandro Cerchietti and Huimin Geng; from UCSF: Dr. Christian Hurtz, Dr. Seyedmehdi Shojaee, Dr. Srividya Swaminathan, Dr. Lars Klemm and Dr. Rahul Nahar; from Children's Hospital Los Angeles: Dr. Nora Heisterkamp, Dr. Soo-mi Kweon, Dr. Eugene Park and Dr. Yong-mi Kim; from Universitätsklinikum Hamburg-Eppendorf: Dr. Melanie Braig; from Universität Heidelberg, Klinikum Mannheim: Dr. Wolf-Karsten Hofmann; from Albert-Ludwigs-Universität Freiburg and Max-Planck-Institute for Immunobiology: Dr. Sebastian Herzog and Dr. Hassan Jumaa; from Cedars Sinai Medical Center, Los Angeles: Dr. Phillip Koeffler; from the Albert Einstein College of Medicine: Dr. Jessica Yu and Dr. Hilda Ye; and from the University of California, Los Angeles: Dr. Thomas G. Graeber.

The authors declare no competing financial interests. Weill Cornell Medical College holds a patent on RI-BPI. Original article: