Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

May 21, 2012--------News Archive Return to: News Alerts


Low IFN-gamma levels were not associated with croup or “stomach flu,” indicating
this system may be closely associated with respiratory viruses and not other infections.

WHO Child Growth Charts

What Is Your BMI?

       

Babies’ Susceptibility to Colds Detectable at Birth

Newborns with a diminished immune response to viruses experience more respiratory infections in their first year of life than newborns whose immune response is more robust

by Julia Evangelou Strait

Innate differences in immunity can be detected at birth, according to new research at Washington University School of Medicine in St. Louis. And babies with a better innate response to viruses have fewer respiratory illnesses in the first year of life.

“Viral respiratory infections are common during childhood,” says first author Kaharu Sumino, MD, assistant professor of medicine.

“Usually they are mild, but there’s a wide range of responses — from regular cold symptoms to severe lung infections and even, in rare instances, death. We wanted to look at whether the innate immune response — the response to viruses that you’re born with — has any effect on the risk of getting respiratory infections during the baby’s first year.”

Published in the May issue of the Journal of Allergy and Clinical Immunology, Sumino and her colleagues found that newborns with a diminished immune response to viruses experienced more respiratory infections in their first year of life than newborns whose immune response was more robust.


Using umbilical cord blood samples taken in the delivery room, researchers measured a specific immune system product made in response to viral infection: interferon-gamma (IFN-gamma).

IFN-gamma is released by some cells of the immune system when encountering a virus. An important weapon in the immune system’s arsenal, IFN-gamma helps fight viruses by stopping them from replicating.

Kaharu Sumino, MD, assistant professor of medicine


The researchers studied cord blood samples from 82 babies in St. Louis enrolled in the Urban Environment and Childhood Asthma (URECA) trial. Eighty-five percent of the infants were African-American, and all lived in an area where at least 20 percent of the residents were below the poverty level. All had at least one parent with allergies, asthma or eczema, putting them at higher risk for these conditions themselves.

As reported by their caregivers, the babies averaged four colds in their first year with 88 percent of them suffering at least one cold. But the range varied widely with some caregivers reporting no colds and a few reporting as many as nine or 10.

To measure the innate immune response, the blood samples were taken at birth, before any exposure to the environment could influence the child’s immunity. The researchers isolated monocytes, a specific type of white blood cell, from the babies’ cord blood, and infected these cells with a common respiratory virus. They then measured the amount of IFN-gamma produced by the monocytes in response to the virus.

In general, babies whose monocytes responded to the virus by producing higher levels of IFN-gamma had fewer reported colds. Likewise, babies whose monocytes produced lower IFN-gamma levels had more reported colds.


The scientists also found that newborns whose monocytes produced less IFN-gamma also experienced more ear infections, sinus infections, pneumonia, and hospitalizations due to respiratory illness during their first year.

But low IFN-gamma levels were not associated with croup or “stomach flu,” indicating that this system may be closely associated with respiratory viruses and not other types of infections.


In an effort to identify other indicators of viral response, the researchers measured amounts of two other immune molecules: chemokine CCL5 and STAT1. Unlike IFN-gamma, neither showed any correlation with the number of illnesses the babies experienced.

This study in infants, as well as research in mice and human cells, supports the idea that dialing up the body’s IFN-gamma signaling system may help protect against viral infection. The report’s senior author Michael J. Holtzman, MD, the Selma and Herman Seldin Professor of Medicine, is working on drug discovery in this area. Unlike a vaccine, which protects against a specific virus, a drug that improves the body’s innate immunity could help fight a broad range of viruses, including the constantly evolving seasonal flu.

“Ideally, if these results are confirmed, we would like to be able to intervene based on knowledge of the innate IFN-gamma response,” Sumino says. “We’re not there yet — measuring IFN-gamma levels is complex. But in the future, if we can develop a relatively easy way to find out if someone has a deficiency in this system, we would like to be able to give a drug that can boost the innate immune response.”

Sumino K, Tucker J, Shahab M, Jaffee KF, Visness CM, Gern JE, Bloomberg GR, Holtzman MJ. Antiviral interferon-gamma responses of monocytes at birth predict respiratory tract illness in the first year of life. Journal of Allergy and Clinical Immunology. Vol 129. No 5. May 2012. Online March 29, 2012.

This work was supported by grants from the National Institute of Allergy and Infectious Disease (NIAID) and the National Heart, Lung, and Blood Institute (NHLBI), both part of the National Institutes of Health (NIH).

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Original article: http://news.wustl.edu/news/Pages/23831.aspx