Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

May 29, 2012--------News Archive Return to: News Alerts


Major depression, electrical activity in the front of the brain in an area responsible
for reasoning and attention, can be out of balance with activity in deeper
brain regions involved in regulating emotions.

WHO Child Growth Charts

What Is Your BMI?

       

Researchers Identify Key Brain Cell in Antidepressant Action

Researchers have discovered that a specific type of cell in the outer layers of the brain is crucial for Antidepressant medication action

Antidepressant medications such as Prozac have helped improve mood and lessen anxiety in millions of people with major depression. But scientists know surprisingly little about how these drugs work. Now researchers have discovered that a specific type of cell in the outer layers of the brain is crucial for Prozac's action.

The study, a collaboration led by Howard Hughes Medical Institute (HHMI) investigator Nathaniel Heintz and Paul Greengard, both at Rockefeller University, is the first demonstration that genetic profiling of specific neural cell types can lead to new insights into the cause of brain disease. The study is published in the May 25, 2012, issue of the journal Cell.

“These SSRIs increase serotonin in many places in the brain. So the question is, how do they have such a strong clinical impact on one particular aspect of behavior?”
Nathaniel Heintz

“There may be many different cell types whose activity you can alter to have a beneficial impact in depression, and this is one of them," says Heintz. More broadly, he says, "it's proof-of-concept that this approach can give you tremendous information about both the causes of disease and strategies for treatment."

Brain scanning studies over the past decade or so have revealed abnormal patterns of neural activity in people with major depression. More specifically, electrical activity in the front of the brain, which is responsible for reasoning and attention, seems to be out of balance with activity in deeper regions involved in regulating emotions in those individuals.

After many months of use, antidepressants called selective serotonin reuptake inhibitors, or SSRIs, can gradually balance out those brain signals. These drugs increase the amount of serotonin, a chemical messenger, outside of cells. But low serotonin doesn't cause depression, and no one knows why increasing the chemical leads to positive effects.

"These SSRIs increase serotonin in many places in the brain," Heintz says. "So the question is, how do they have such a strong clinical impact on one particular aspect of behavior?"

The answer, according to two decades of work in Heintz's lab, lies in the remarkable diversity of cells in the brains of humans and other mammals. According to classical studies and his team’s findings, he estimates that there are roughly 500 cell types, from the classic pyramidal neurons that fire off electrical impulses, to inhibitory interneurons that block these signals, to microglia that trigger an immune response during injury or infection. Each cell type may respond differently to specific genetic mutations, environmental exposures, and drugs.

"Some cells deal with a specific situation just fine, they adjust and compensate and their function is normal," Heintz says. "But some cell types can't do that, and as a result, they cause disruptions in a circuit."

The first step in sorting out these cell-specific pathways is cataloging all of the various kinds of cells. Until recently, researchers could only do that by growing isolated cells in culture, outside of the animal. Heintz and his colleagues developed an alternative technique, called TRAP, or translating ribosome affinity purification, which they described in articles published in collaboration with Paul Greengard’s laboratory in 2008, also in Cell.

TRAP works by capturing all of the proteins expressed by a particular cell when it's still in a live animal, nestled in its natural environment in the presence of many other types of cells. So far, Heintz's team has used the molecular profiles revealed by TRAP to characterize about 120 different types of cells in the nervous system.

In the new study, the researchers focused on a particular cell that's found in an outer layer of the brain’s cortex and produces a protein called p11, which binds to serotonin receptors. Mice lacking p11 are lethargic and anxious, similar to people with depression, and do not respond to antidepressant drugs. What's more, postmortem studies have found that suicide victims have decreased levels of p11 in the outer layers of their brains.

Eric Schmidt, a postdoctoral fellow in Heintz's lab, first used fluorescent tags to trace the projections of these p11-producing cells in the mouse brain. He found that the projections go from the cerebral cortex down into the striatum, a deep region. This suggested that these cells were plausible candidates for influencing the signaling imbalance in those areas that's been linked to depression.

When Schmidt exposed these cells to an SSRI called fluoxetine (better known as Prozac), they responded by drastically increasing their production of a protein called HTR4, which is a serotonin receptor. In other words, once the cells sense a surge in serotonin, they adjust so that they can be even more sensitive to the chemical.

Intriguingly, drugs that activate HTR4 already exist and are known to have antidepressant effects. Unfortunately, because many other cells throughout the body also express this receptor, the drugs are quite toxic.

"So now the search is on for other molecules that are expressed in this same cell type whose activity could be targeted as an alternative treatment," Heintz says.

This kind of cell-by-cell analysis will be useful beyond the study of depression, Heintz says, noting that Envoy Therapeutics, a biotechnology company he co-founded, is using TRAP to hunt for new treatments for Parkinson's disease, schizophrenia, and addiction.

"We feel that you can't make real progress without targeting individual cell types," Heintz says. "This study is just the tip of the iceberg."

Original article: http://www.hhmi.org/news/heintz20120525.html