Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

June 1, 2012--------News Archive Return to: News Alerts


Researchers at Dana-Farber/Children's Hospital Cancer Center say they have identified
a compound that "flips a switch" that directly activates one of the most powerful death
proteins, BAX, triggering self-destruction of unwanted cells
.


WHO Child Growth Charts

What Is Your BMI?

       

Activating Cell 'Death Protein' To Stop Cancers

Researchers have devised a strategy to directly activate a natural "death" protein, triggering the self-destruction of cells

Researchers at Dana-Farber/Children's Hospital Cancer Center say the development could represent a new paradigm for designing cancer drugs. Their article is published as an advanced online publication of Nature Chemical Biology. Led by scientists Loren Walensky, MD, PhD, they identified a prototype compound that "flips a switch" to directly activate one of the most powerful death proteins, known as BAX, triggering apoptosis, or self-destruction of unwanted cells.

"Having identified the 'on switch' for the BAX protein several years ago, we now have a small molecule that can directly turn this death protein on," says Walensky, senior author of the report. The first author, Evripidis Gavathiotis, PhD, carried out the work in Walensky's laboratory; currently he is an assistant professor at Albert Einstein College of Medicine in New York.

The development exploited the discovery by Walensky's team of a distinctive groove, or "trigger site," on the BAX protein that converts it from a quiescent form to an active one. When activated, BAX damages the cell's mitochondria, releasing signals that break the cell apart and digest its pieces. This process of programmed cell death is part of a natural check-and-balance mechanism to control cellular life and death.

In search of molecular compounds that could fit snugly into the trigger site and jump-start BAX, the investigators used computer-based screening to sift through 750,000 small molecules from commercially available libraries.

The search paid off with the identification of a small-molecule compound named BAM7 (BAX Activator Molecule 7), which selectively bound to BAX and flipped its "on switch," turning it into an active death protein.

"A small molecule has never been identified before to directly activate BAX and induce cell death in precisely this way," explains Gavathiotis. "Because BAX is a critical control point for regulating cell death, being able to target it selectively opens the door to a new therapeutic strategy for cancer and perhaps other diseases of cellular excess."

But wouldn't switching on cell-death proteins in a patient kill normal cells as well? The researchers say that other compounds now in clinical trials that target the apoptosis pathway haven't shown such side effects. Gavathiotis suggests that there are sufficient extra survival proteins in normal cells to protect them against pro-death BAX. Cancer cells, however, are under stress and their survival mechanism is stretched to the limit, so that an attack by BAX pushes the cells over the brink into self-destruction.

The Walensky group has previously developed other compounds designed to spur apoptosis of cancer cells. These agents do so either by blocking "anti-death" proteins, deployed by cancer cells to prevent BAX and other death molecules from carrying out their assignment, or by blocking both "anti-death" proteins and activating "pro-death proteins" simultaneously. BAM7 is the first compound that avoids combat with cancer cell's survival proteins and binds directly and selectively to BAX to turn on cell death.

"We find that small molecule targeting of the BAX trigger site is achievable and could lead to a new generation of apoptotic modulators that directly activate BCL-2 executioner proteins in cancer and other diseases driven by pathologic apoptotic blockades," write the authors.

Walensky and his colleagues continue to work on BAM7, which is a prototype of drugs that might one day be approved for cancer treatment. Several biotechnology companies have already expressed interest in developing the compound, he says.

Other authors from Walensky's Dana-Farber lab are Denis Reyna, Joseph Bellairs, and Elizaveta Leshchiner.

The research was funded by the William Lawrence and Blanche Hughes Foundation, with additional support provided by grants from the National Institutes of Health (grants 4R00HL095929 and 5R01CA050239) and Stand Up To Cancer.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook:facebook.com/danafarbercancerinstitute.

Original article: http://www.eurekalert.org/pub_releases/2012-05/dci-nsd053112.php