Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

June 22, 2012--------News Archive Return to: News Alerts

Danio rerio

The zebrafish, Danio rerio, is a tropical freshwater fish belonging to the minnow family.
It is a popular aquarium fish, frequently sold under the trade name zebra danio, and is
an important vertebrate model organism in scientific research.

from Wikipedia.org

WHO Child Growth Charts

       

Environmental Estrogens Affect Early Heart Valve Development in Zebrafish

Chemicals in the environment that mimic estrogen can strongly influence the development of humans and other animals

New research to be presented at the 2012 International Zebrafish Development and Genetics Conference, held June 20-24 in Madison, Wisconsin, reveals that these substances may act even earlier than previously realized, at the very beginning stages of embryonic development.

Estrogen in the environment is both naturally occurring, such as in food plants - and synthetic, such as bisphenol A (BPA), used in making hard plastic bottles, like baby bottles and metal-based food and beverage cans, including those for baby formula. Estrogen compounds are known to affect development of the sex organs, but not much is known about other effects, including any at beginning embryonic development.

"The timing of exposure is critical. Evidence from animals suggests that there are critical periods of development when endocrine disruptors could be more deleterious than exposure during adulthood," says Daniel Gorelick, Ph.D., a postdoctoral fellow at the Carnegie Institution for Science.

Working with Professor Marnie Halpern, Ph.D., Dr. Gorelick discovered a new and unexpected activity of estrogen during early stages of embryo development. He will present his findings at the conference on Sunday, June 24.

The researchers used zebrafish, which offer several advantages for studying this question.

"People have used fish as environmental sentinels for aquatic pollution for decades," Dr. Gorelick says. Most studies, however, have been limited to fairly crude effects such as death or large-scale changes in single genes.

The researchers studied where and when estrogen receptors are active throughout the body. They genetically developed fish whose cells make a green fluorescent protein when their estrogen receptors are activated. They then looked at the fish early throughout development, during formation of the major tissues and organ systems, including the heart, gut, and central nervous system.

Because zebrafish embryos are transparent during early development, the researchers were able to see individual estrogen-responsive cells in living, growing embryos.


"We found some things that were expected, which was estrogen receptor activity in the liver and parts of the brain known to be estrogen-responsive. The big surprise was finding it in the heart, and specifically in heart valves, which to my knowledge had not been known to be sensitive to estrogens." Dr. Gorelick


In fact, the heart appears to be even more sensitive than other organs to some estrogenic compounds, particularly genistein (a common dietary estrogen found in plants) and BPA.

That finding prompted the researchers to look for possible effects of environmental estrogens. In collaboration with the Fish Health Branch of the U.S. Geological Survey and the University of Maryland School of Medicine, they collected concentrated water samples from in and around the Chesapeake Bay and found that these water samples also activate the zebrafish estrogen receptors, with especially high activation in the heart valves.

Researchers don't yet know what role estrogen sensitivity in the heart may play, nor how the fish's development may be affected by such early exposure to estrogenic compounds. As with many signaling molecules, it's likely that both the timing and the amount of exposure are critical.


"They [zebrafish] can respond to estrogens in the lab, but also estrogens in the environment in samples from local rivers and streams. [Estrogens} are everywhere and they're unavoidable, but it's the dose that makes the poison."
Dr.Gorelick


Dr. Gorelick and his colleagues are now working to identify specific compounds from the water samples that activate the receptors, as well as to learn what physiological role estrogen receptor activity plays in heart development and function.

ABOUT THE INTERNATIONAL CONFERENCE ON ZEBRAFISH GENETICS AND DEVELOPMENT: The zebrafish emerged as a major model system in 1994 with the first international conference at Cold Spring Harbor with 350 participants. This year the zebrafish community celebrates its 10th biennial international conference with more than 900 participants in Madison, WI. Studies using the zebrafish as a model system have allowed us to understand the genetic control of early development that underlie many human diseases. For more information about the conference, see http://www.zebrafishgenetics.org/

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes Genetics, a leading journal in the field and an online, open-access journal, G3: Genes|Genomes|Genetics. For more information about GSA, please visit www.genetics-gsa.org. Also follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.

Original article: http://www.eurekalert.org/pub_releases/2012-06/gsoa-eea062112.php