Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

June 25, 2012--------News Archive Return to: News Alerts

Diagram of a brain cell axon illustrating the dense
array of protein fibers that make up the neural cytoskeleton.

Actin filaments and microtubules interact to regulate initiation, elongation, branching,
and guidance of neural axons and dendrites in the developing brain.

Illustration courtesy of J. Lim, graduate student, Scripps Research.

WHO Child Growth Charts

       

Research Discovers Cause of Inherited Form of Epilepsy

Findings could open avenues for improved therapies for a range of conditions

Researchers at McGill University have discovered the cause of an inherited form of epilepsy.

The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X (female) chromosome. Drs. Susanne Bechstedt and Gary Brouhard of the Department of Biology have used a highly advanced microscope to discover how these mutations cause a malformation of the human brain.

The results of their study are published in the journal Developmental Cell.

When the brain develops in the uterus, new brain cells are born deep within the brain, near the center. These newborn brain cells then crawl out of the so-called "niche" where they were born and migrate outward to the edges of the brain. This outermost layer of the brain is known as the cerebral cortex and is the seat of all higher-level thinking and cognition.


In girls with a mutation on their X chromosome, the outward migration of brain cells unfortunately fails. Instead of making it all the way to the edges of the brain, some of the brain cells pile up on top of one another and form a secondary or "double-cortex."

The activity of these abnormally placed brain cells gives rise to seizures and also, in some cases, mental retardation.


Drs. Bechstedt and Brouhard were able to purify the product of the mutated gene, a protein known as doublecortin, and to watch the protein in action under a microscope.

This protein helps brain cells to build a scaffold inside themselves, much like the scaffolds at construction sites, built of "poles" called microtubules; these form a "skeleton" for the brain cells, known as the cytoskeleton. Brain cells require this internal skeleton to crawl and to migrate, much as humans need their skeletons to walk and run.

The McGill researchers discovered that, in order for doublecortin proteins to help build this scaffold, many doublecortin proteins must work together as a team. They found that disease-causing mutations cause a breakdown in this teamwork. This loss of teamwork is sufficient to prevent the brain cells from constructing a proper "skeleton."


This discovery has implications for treatments for a range of conditions, from other forms of epilepsy to spinal cord injuries.


In each case, therapies are increasingly directed at triggering brain cells to extend their skeletons -- for example when re-growing a nerve ending past the site of a wound in the spinal cord. Understanding how brain cells construct their skeletons will open avenues for doctors to target the brain cell skeleton to extend and re-grow when needed.

This research was funded by the Canadian Institutes of Health Research.

Original article: