Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

June 26, 2012--------News Archive Return to: News Alerts


Image of human cerebral cortex, digitally "inflated" to smooth out normal folds and
ridges, showing in red the portion of auditory cortex that responds to the distance
from which sounds arrive.

WHO Child Growth Charts

       

Brain Area Identified that Determines Distance from Which Sound Originates

Functional imaging finds neurons sensitive to distance but not loudness

Researchers at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital have identified a portion of the brain responsible for determining how far away a sound originates, a process that does not rely solely on how loud the sound is.

The investigators' report, which will appear in the early edition of Proceedings of the National Academy of Sciences, is receiving early online release this week.

"Although sounds get louder when the source approaches us, humans are able to discriminate between loud sounds that come from far away and softer sound from a closer source, suggesting that our brains use distance cues independent of loudness," says Jyrki Ahveninen, PhD, of the Martinos Center, senior author of the PNAS report.

"Using functional MRI we found a group of neurons in the auditory cortex sensitive to the distance of sound sources and different from those that process changes in loudness. In addition to providing basic scientific information, our results could help future studies of hearing disorders."

The human brain has distinct areas for processing sensory information – signals responsible for vision, hearing, taste etc. Studies of the visual cortex, located at the back of the brain, have produced detailed maps of areas handling particular portions of the visual field. But understanding of the auditory cortex, located on the side of the head above and behind the ear, is quite limited.


While it is known that the portion of the auditory cortex extending toward the back of the head determines where a sound comes from, exactly how the brain translates complex auditory signals to determine both the location and distance from which a sound originates is not yet known.


In their search for auditory neurons that process sound distance, the research team faced some particular challenges. In research laboratories that study hearing, sounds must be delivered to study participants through headphones, which means the acoustical "space" in which a sound is generated must be simulated.

This must be done with exquisite accuracy, since environmental aspects causing sound to reverberate probably contribute to distance perception. Since the MRI equipment itself generates a loud noise, the researchers scanned participants' brains once every 12 seconds to measure responses to sounds presented during intervening quiet periods.

In the first experiment, study participants – 12 adults with normal hearing – listened to a series of paired sounds of varying degrees of loudness and at simulated distances ranging from 15 to 100 cm and were asked to indicate whether the second sound was closer or farther away than the first.


Although the differences in loudness varied randomly, participants were quite accurate in distinguishing the simulated distances of the sounds. Acoustical analysis of the particular sound cues presented indicated that the reverberations produced by a sound, which are more pronounced in a closed environment and for sounds traveling farther, may be more important distance cues than are the differences between sounds perceived by a participant's two ears.


After the first experiment confirmed the accuracy of the simulated acoustical environment, functional MR images taken while participants listened to another series of paired sounds recorded how activity in the auditory cortex changed in response to sounds of varying loudness and direction as well as during sound of constant levels and silence. The images produced identified a small area that appears to be sensitive to cues indicating distance but not loudness. As far as the investigators know, this is the first time neurons sensitive to sound-source distances have been discovered.

"The identified area is located near other auditory cortical areas that process spatial information," says corresponding author Norbert Kopco, PhD.

"This is consistent with a general model of perceptual processing in the brain, suggesting that in hearing, as in vision and other senses, spatial information is processed separately from information about the object's identity or characteristics such as the musical pitch of sound. Our study also illustrates how important it is to combine expertise from different fields – in our case imaging/physiology, psychology, and computational neuroscience – to advance our understanding of such a complex system as the human brain."

A visiting scholar at the Center for Computational Neuroscience at Boston University as well as the Martinos Center, Kopco is on the faculty of the Institute of Computer Science, Šafárik University, Košice, Slovakia. Ahveninen is an assistant professor of Radiology at Harvard Medical School. Additional co-authors of the PNAS report are Samantha Huang, PhD, John Belliveau, PhD, Tommi Raiy, MD, PhD, and Chinmayi Tengshe, MSc, all of the Martinos Center. The study was supported by grants from the National Institutes of Health and the European Community.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Original article: http://www.massgeneral.org/about/pressrelease.aspx?id=1475