Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

July 9, 2012--------News Archive Return to: News Alerts


Young bees take care of bee babies called larvae.
A bee larvae looks somewhat like a croissant, and
each baby has her own hexagonal compartment
inside the nest of the colony.

The young bees patrol the nest and inspect
each compartment to clean and feed the larvae.
Photo by: Bente Smedal

WHO Child Growth Charts

       

Bees Can 'Turn Back Iime,' Reverse Brain Aging

Older honey bees effectively reverse brain aging when they take on nest responsibilities typically handled by much younger bees

While current research on human age-related dementia focuses on potential new drug treatments, researchers say these findings suggest that social interventions may be used to slow or treat age-related dementia.

In a study published in the scientific journal Experimental Gerontology, a team of scientists from Arizona State University (ASU) and the Norwegian University of Life Sciences, led by Gro Amdam, an associate professor in ASU’s School of Life Sciences, presented findings that show that tricking older, foraging bees into doing social tasks inside the nest causes changes in the molecular structure of their brains.

“We knew from previous research that when bees stay in the nest and take care of larvae – the bee babies – they remain mentally competent for as long as we observe them,” said Amdam.

“However, after a period of nursing, bees fly out gathering food and begin aging very quickly. After just two weeks, foraging bees have worn wings, hairless bodies, and more importantly, lose brain function – basically measured as the ability to learn new things. We wanted to find out if there was plasticity in this aging pattern so we asked the question, ‘What would happen if we asked the foraging bees to take care of larval babies again?”

During experiments, scientists removed all of the younger nurse bees from the nest – leaving only the queen and babies. When the older, foraging bees returned to the nest, activity diminished for several days. Then, some of the old bees returned to searching for food, while others cared for the nest and larvae.


Researchers discovered that after 10 days, about 50 percent of the older bees caring for the nest and larvae had significantly improved their ability to learn new things.


Amdam’s international team not only saw a recovery in the bees’ ability to learn, they discovered a change in proteins in the bees’ brains. When comparing the brains of the bees that improved relative to those that did not, two proteins noticeably changed.


They found Prx6, a protein also found in humans that can help protect against dementia – including diseases such as Alzheimer’s – and they discovered a second and documented “chaperone” protein that protects other proteins from being damaged when brain or other tissues are exposed to cell-level stress.


In general, researchers are interested in creating a drug that could help people maintain brain function, yet they may be facing up to 30 years of basic research and trials.

“Maybe social interventions – changing how you deal with your surroundings – is something we can do today to help our brains stay younger,” said Amdam. “Since the proteins being researched in people are the same proteins bees have, these proteins may be able to spontaneously respond to specific social experiences.”

Amdam suggests further studies are needed on mammals such as rats in order to investigate whether the same molecular changes that the bees experience might be socially inducible in people.

Original article: https://asunews.asu.edu/20120702_bee_brainaging