Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

July 24, 2012--------News Archive Return to: News Alerts


Stem cells in culture.

WHO Child Growth Charts

       

Judging DNA by Its Cover

A newly-discovered molecular repackaging mechanism might explain the link between stem cells and cancer

Stem cells hold great promise for medicine, if their ability to cause cancer can be understood and controlled.

When these self-renewing, unspecialized cells fail to differentiate into diverse cell types, they can start dividing uncontrollably which leads to cancer. Several decades ago, Weizmann Institute scientists were among the first to demonstrate the link between cancer and the faulty differentiation of stem cells. Now a new Weizmann Institute-led study, published in Molecular Cell, reveals a potential molecular mechanism behind the cancer link.

The scientists managed to uncover the details of a step in the process of DNA “repackaging” that takes place during embryonic stem cell differentiation.

It turns out that for the stem cells to differentiate properly, certain pieces of the packaging of their DNA must be labeled by a molecular tag called ubiquitin. Such tagging is required for turning on a group of particularly long genes, which enable the stem cell to differentiate.


Researchers identified two switches:
An enzyme called RNF20 enhances the tagging,
while a second enzyme, USP44, shuts it down.
Both these switches must operate properly
for the differentiation process to proceed.
When scientists interfered with the tagging
– either by disabling the “ON” switch RNF20,
or by deregulating the “OFF” switch USP44
– the stem cells failed to differentiate.


These results help explain the significance of molecular defects identified in a number of cancers. For example, the abnormally low levels of RNF20 in certain breast and prostate cancers, and the excess of USP44 in certain leukemias. Faulty differentiation of stem cells is often a hallmark of more aggressive forms of cancer.

This study belongs to a new direction in cancer research. Rather than focusing on specific genes, the role of epigenetics – or the processes external to the gene code – are identified to ascertain the way gene information is expressed and interpreted within the cell.

Understanding the epigenetic roots of cancer will advance the search for effective therapies of treatment.

This research was led by Prof. Moshe Oren of the Molecular Cell Biology Department, with Prof. Eytan Domany of the Physics of Complex Systems Department and Dr. Jacob Hanna of the Molecular Genetics Department. The team included Weizmann Institute’s Gilad Fuchs, Efrat Shema, Rita Vesterman, Eran Kotler, Sylvia Wilder, Lior Golomb, Ariel Pribluda and Ester Feldmesser, as well as Zohar Wolchinsky of the Technion – Israel Institute of Technology; Feng Zhang and Xiaochun Yu of the University of Michigan in the US; Mahmood Haj-Yahya and Ashraf Brik of Ben-Gurion University of the Negev; and Daniel Aberdam of the Technion and the University of Nice-Sophia Antipolis in France.

Prof. Eytan Domany’s research is supported by the Kahn Family Research Center for Systems Biology of the Human Cell, which he heads; the Mario Negri Institute for Pharmacological Research - Weizmann Institute of Science Exchange Program; the Leir Charitable Foundations; and Mordechai Segal, Israel. Prof. Domany is the incumbent of the Henry J. Leir Professorial Chair.

Dr. Jacob Hanna’s research is supported by the Leona M. and Harry B. Helmsley Charitable Trust; Pascal and Ilana Mantoux, France/Israel; the Sir Charles Clore Research Prize; Erica A. Drake and Robert Drake; and the European Research Council.

Prof. Moshe Oren’s research is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation; the Robert Bosch Foundation; the estate of Harold Z. Novak; and the European Research Council. Prof. Oren is the incumbent of the Andre Lwoff Professorial Chair in Molecular Biology.

Original article: http://wis-wander.weizmann.ac.il/judging-dna-by-its-cover