Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

July 30, 2012--------News Archive Return to: News Alerts


AHC is almost always a sporadic disease, which means
that typically no one else in the family has the disease.

WHO Child Growth Charts

       


Gene Discovery of Mysterious Childhood Paralysis

Alternating hemiplegia of childhood (AHC) is a very rare disorder that causes paralysis that freezes one side of the body and then the other in devastating bouts that arise at unpredictable intervals

Seizures, learning disabilities and difficulty walking are common among patients with this diagnosis.


Researchers at Duke University Medical Center discovered
that mutations in one gene cause the disease
in the majority of patients with a diagnosis of AHC,
and because of the root problem they discovered,
a treatment may become possible.


The study was published online on July 29 in Nature Genetics.

AHC is almost always a sporadic disease, which means that typically no one else in the family has the disease, said Erin Heinzen, Ph.D., co-author of the study and Assistant Professor of Medicine in the Section of Medical Genetics. "Knowing that we were looking for genetic mutations in children with this disease that were absent in the healthy parents, we carefully compared the genomes of seven AHC patients and their unaffected parents. When we found new mutations in all seven children in the same gene we knew we had found the cause of this disease."

All of the mutations were found in a gene that encodes ATP1A3, one piece of a key transporter molecule that normally would move sodium and potassium ions across a channel between neurons (nerve cells) to regulate brain activity.

In a remarkably broad international collaborative effort, the authors partnered with three family foundations (USA, Italy and France), including scientists from 13 different countries, to study an additional 95 patients and showed over 75 percent had disease-causing mutations in the gene for ATP1A3.

"This study is an excellent example of how genetic research conducted on a world-wide scale really can make a difference for such a rare disorder as AHC," said Arn van den Maagdenberg, Ph.D., and co-author on the study and geneticist from Leiden University Medical Centre in the Netherlands. "It truly was an effort from many research groups that led to this remarkable discovery."


"This kind of discovery really brings home
just what the human genome project
and next-generation sequencing have made possible.

For a disease like this one with virtually no large families
to study, it would have been very difficult
to find the gene before next-generation sequencing."

David Goldstein, Ph.D.
Director, Duke Center for Human Genome Variation
co-senior author on the study


"Ideally what you want from a study like this is a clear indication of how the mutations change protein function so you know how to screen for drugs that will restore normal function or compensate for the dysfunction," said Goldstein, who is also a Professor in Duke Molecular Genetics and Microbiology. "While there is considerably more work to do, our initial evaluation of the mutations suggests that they may alter the behavior of the transporter pump as opposed to reducing its activity, as do other mutations in the gene that cause a less severe neurological disease."

Co-senior author Mohamad Mikati, M.D., Professor of Pediatrics and of Neurobiology, and Chief of Pediatric Neurology at Duke, said, "Many years ago my work with other collaborators on a family with this disease proved that AHC can be caused by genetic factors, but until now we did not know the underlying gene abnormality.


"The finding that ATP1A3 mutations cause AHC
will increase awareness of the disease
and the ability to accurately diagnose patients."

Mohamad Mikati, M.D.


"While it may take a while for novel drugs to be developed to better treat this disease, we will see an immediate impact through specific testing for mutations in this gene when we suspect a case of AHC. This direct testing will prevent misdiagnoses that too often have caused patients to be treated with inappropriate medications."

Other authors worked at the University of Utah, Salt Lake City; Università Cattolica Sacro Cuore, Rome; UPMC Univ Paris, INSERM, CNRS and Groupe Hospitalier de la Pitié-Salpêtrière, in Paris; Leiden University Medical Centre, Leiden, The Netherlands; University of Melbourne, Melbourne, Australia; University Hospitals of Lyon, France; University of Chicago, Illinois; University of California, San Francisco; Rijnland Hospital, Leiderdorp, The Netherlands; Sydney Children's Hospital, Randwick, and University of Sydney, New South Wales, Australia; Royal Hobart Hospital, Hobart, Australia; Our Lady's Children's Hospital, Crumlin, and the Childrens University Hospital, Dublin, Ireland; Rigshospitalet, University of Copenhagen; CRNL, CNRS INSERM, in Lyon, France; and UCL Institute of Neurology, London.

The study was funded by the Center for Human Genome Variation, the Alternating Hemiplegia of Childhood Foundation, the ENRAH for SMEs Consortium grant of the European Commission Research Programme, Association Française de l'Hémiplégie Alternante, A.I.S.EA Onlus, CMSB within the Netherlands Genomics Initiative, the Wellcome Trust, and the University of Utah.

Original article: http://www.dukehealth.org/health_library/news/gene-discovery-set-to-help-with-mysterious-paralysis-of-childhood