Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

July 31, 2012--------News Archive Return to: News Alerts

Sometimes out-of-control behavior is caused by a mental health disorder known
as attention-deficit/hyperactivity disorder ADHD.

WHO Child Growth Charts

       

Brain Development Delayed in Attention-Deficit/Hyperactivity Disorder

Is attention-deficit/hyperactivity disorder (ADHD) due to a delay in brain development or the result of complete deviation from typical development?

In the current issue of Biological Psychiatry, Dr. Philip Shaw and colleagues present evidence for delay based on a study by the National Institutes of Health.

The cerebral cortex is the folded gray tissue that makes up the outermost portion of the brain, covering the brain's inner structures. This tissue has left and right hemispheres and is divided into lobes. Each lobe performs specific and vitally important functions, including attention, thought, language, and sensory processing.

Two dimensions of this structure are cortical thickness and cortical surface area, both of which mature during childhood as part of the normal developmental process. This group of scientists had previously found that the thickening process is delayed in children diagnosed with ADHD. So in this study, they set out to measure whether surface area development is similarly delayed.

They recruited 234 children with ADHD and 231 typically developing children and scanned each up to 4 times. The first scan was taken at about age 10, and the final scan was around age 17. Using advanced neuroimaging technology, they were able to map the trajectories of surface area development at over 80,000 points across the brain.


Research found that the development of the cortical surface
is delayed in frontal brain regions in children with ADHD.
For example, the typically developing children attained 50% peak area in the right prefrontal cortex
at a mean age of 12.7 years, whereas the ADHD
children didn't reach this peak until 14.6 years of age.


"As other components of cortical development are also delayed, this suggests there is a global delay in ADHD in brain regions important for the control of action and attention," said Dr. Shaw, a clinician studying ADHD at the National Institute of Mental Health and first author of this study.

"These data highlight the importance of longitudinal approaches to brain structure," commented Dr. John Krystal, Editor of Biological Psychiatry. "Seeing a lag in brain development, we now need to try to understand the causes of this developmental delay in ADHD."

Dr Shaw agrees, adding that this finding "guides us to search for genes that control the timing of brain development in the disorder, opening up new targets for treatment."

Additional work expanding these measures into adulthood will also be important. Such data would help determine whether or when a degree of normalization occurs, or if these delays translate into long-lasting cortical deficits.

The article is "Development of Cortical Surface Area and Gyrification in Attention-Deficit/Hyperactivity Disorder" by Philip Shaw, Meaghan Malek, Bethany Watson, Wendy Sharp, Alan Evans, and Deanna Greenstein (doi: 10.1016/j.biopsych.2012.01.031). The article appears in Biological Psychiatry, Volume 72, Issue 3 (August 1, 2012), published by Elsevier.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 5th out of 129 Psychiatry titles and 16th out of 243 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2011 Impact Factor score for Biological Psychiatry is 8.283.

About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including TheLancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect, Scopus, Reaxys, ClinicalKey and Mosby's Nursing Suite, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Original article: http://www.eurekalert.org/pub_releases/2012-07/e-bdi073012.php