Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

August 6, 2012--------News Archive Return to: News Alerts


These are cardiomyocytes (heart muscle cells) generated
from stem cells and expressing a green fluorescent protein.

WHO Child Growth Charts

       

Mending a Broken Heart - Molecule Turns Stem Cells Into Heart Cells

Researchers discovered a molecule that converts stem cells into heart cells, which could be used to replace diseased or damaged tissue in heart diseased patients

For years, scientists have been looking for a good source of heart cells that can be used to study cardiac function in the lab, or perhaps even to replace diseased or damaged tissue in heart disease patients.

To do this, many are looking to stem cells.


Research at Sanford-Burnham Medical Research Institute
(Sanford-Burnham), the Human BioMolecular
Research Institute, and ChemRegen, Inc.
have been searching for molecules that convert stem cells
to heart cells for about eight years—
and now they've found one.


Writing in the August 3 issue of Cell Stem Cell, the team describes how they sifted through a large collection of drug-like chemicals and uncovered ITD-1, a molecule that can be used to generate unlimited numbers of new heart cells from stem cells.

"Heart disease is the leading cause of death in this country. Because we can't replace lost cardiac muscle, the condition irreversibly leads to a decline in heart function and ultimately death. The only way to effectively replace lost heart muscle cells—called cardiomyocytes—is to transplant the entire heart," said Mark Mercola, Ph.D., director of Sanford-Burnham's Muscle Development and Regeneration Program and senior author of the study. "Using a drug to create new heart muscle from stem cells would be far more appealing than heart transplantation."

Searching for a needle in a haystack
Stem cells are important because they do two unique things—1) self-renew, producing more stem cells and 2) differentiate, becoming other, more specialized cell types.


To obtain a large number of a certain cell type,
such as heart cells, the hard part is figuring
out the signals that direct them
to become the desired cell type.


Mercola's group has been hunting for heart-inducing signals for 15 years—in embryos and in stem cells. To find a synthetic molecule that might one day lead to a drug therapy to regenerate the heart, they joined forces with a team of medicinal chemists at the Human BioMolecular Research Institute led by John Cashman, Ph.D.

With funding from the California Institute for Regenerative Medicine, they used sophisticated robotic technology to methodically test a large collection of drug-like chemicals, looking for that needle in a haystack that, when added to stem cells, results in cardiomyocytes. The winning compound was ITD-1.

Therapeutic applications
There's no shortage of therapeutic possibilities for ITD-1. "This particular molecule could be useful to enhance stem cell differentiation in a damaged heart," explained Erik Willems, Ph.D., postdoctoral researcher in Mercola's lab and first author of the study.


"At some point, it could become the basis for a new
therapeutic drug for cardiovascular disease—
one that would likely limit scar spreading
in heart failure and promote
new muscle formation."

Erik Willems, Ph.D.


Mercola, Willems, and Cashman are now working with San Diego biotech company ChemRegen, Inc. to further develop ITD-1 into a drug that one day might be used to treat patients.

More scientific detail
TGF? (short for transforming growth factor-?) is a protein produced by one cell type to influence others' behaviors, such as proliferation, scarring, and even stem cell differentiation. TGF? works from outside the cell, binding to a receptor on the surface of a responding cell to initiate an intracellular signaling cascade that causes genes to be switched on or off, ultimately altering cellular behavior—in this case making heart muscle.


The researchers discovered that ITD-1 blocks
a cellular process known as TGF? signaling.


ITD-1 triggers degradation of the TGF? receptor, thus inhibiting the whole process. With TGF? signaling turned off, stem cells are set on a course toward cardiogenesis. ITD-1 is the first selective inhibitor of TGF?, meaning that it might also have applications in many other processes controlled by TGF?.

This research was funded by the California Institute for Regenerative Medicine, the National Heart, Lung, and Blood Institute of the U.S. National Institutes of Health, the Human BioMolecular Research Institute, the American Heart Association, the German Research Foundation, and the T Foundation.

The study was co-authored by Erik Willems, Sanford-Burnham and ChemRegen Inc.; Paul J Bushway and Joaquim Cabral-Teixeira, Sanford-Burnham; Dennis Schade, ChemRegen Inc. and Human BioMolecular Research Institute; Wenqing Cai, Sanford-Burnham; Patrick Reeves, Harvard Medical School; Marion Lanier, ChemRegen Inc. and Human BioMolecular Research Institute; Christopher Walsh, Salk Institute for Biological Studies; Tomas Kirchhausen, Harvard Medical School; Juan Carlos Izpisua Belmonte, Salk Institute for Biological Studies and Center for Regenerative Medicine in Barcelona; John Cashman, ChemRegen Inc. and Human BioMolecular Research Institute; Mark Mercola, Sanford-Burnham and ChemRegen Inc.

About Sanford-Burnham Medical Research Institute
Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. The Institute consistently ranks among the top five organizations worldwide for its scientific impact in the fields of biology and biochemistry (defined by citations per publication) and currently ranks third in the nation in NIH funding among all laboratory-based research institutes.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a U.S.-based, non-profit public benefit corporation, with operations in San Diego (La Jolla), California and Orlando (Lake Nona), Florida. For more information, news, and events, please visit us at www.sanfordburnham.org.

About Human BioMolecular Research Institute
The Human BioMolecular Research Institute is a non-profit research institute conducting basic research focused on unlocking biological and chemical principles related to diseases of the human brain, cardiovascular disease and cancer. The Institute conducts fundamental studies of central nervous system disorders, heart disease and cancer including stem cell approaches and translates findings into new drug development to address human illness. In addition, the institute promotes scientific learning through community service and public access by disseminating information and sharing research with collaborators, colleagues and the public. For more information, visit www.HBRI.org.

About ChemRegen Inc.
ChemRegen is a for-profit company doing research directed at identifying small molecules of use for addressing human diseases. The approach is to develop regenerative medicines to work in conjunction with human embryonic stem cells to cure major human diseases including heart disease, cancer and other diseases. For more information, visit www.ChemRegen.com.

Original article: http://www.eurekalert.org/pub_releases/2012-08/smri-mab072612.php