Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

August 7, 2012--------News Archive Return to: News Alerts


Image: National Institutes of Health (NIH)

WHO Child Growth Charts

       

New Study Finds Link Between Cell Division and Growth Rate

Findings answer puzzling question of how cells know when to progress through the cell cycle

It's a longstanding question in biology: How do cells know when to progress through the cell cycle?

In simple organisms such as yeast, cells divide once they reach a specific size. However, determining if this holds true for mammalian cells has been difficult, in part because there has been no good way to measure mammalian cell growth over time.

Now, a team of MIT and Harvard Medical School (HMS) researchers has precisely measured the growth rates of single cells, allowing them to answer that fundamental question. In the Aug. 5 online edition of Nature Methods, the researchers report that mammalian cells divide not when they reach a critical size, but when their growth rate hits a specific threshold.


Mammalian cells divide
not when they reach a critical size,
but when their growth rate hits a specific threshold.


This first-ever observation of this threshold was made possible by a technique developed by MIT professor Scott Manalis and his students in 2007 to measure the mass of single cells. In the new study, Manalis and his colleagues were able to track cell growth and relate it to the timing of cell division by measuring cells' mass every 60 seconds throughout their lifespans.

The finding offers a possible explanation for how cells determine when to start dividing, says Sungmin Son, a grad student in Manalis' lab and lead author of the paper. "It's easier for cells to measure their growth rate, because they can do that by measuring how fast something in the cell is produced or degraded, whereas measuring size precisely is hard for cells," Son says.

Manalis, a professor of biological engineering and member of the David H. Koch Institute for Integrative Cancer Research at MIT, is senior author of the paper. Other authors are former MIT grad student Yaochung Weng; Amit Tzur, a former research fellow at HMS; Paul Jorgensen, a former HMS postdoc; Jisoo Kim, a former undergraduate student at MIT; and Marc Kirschner, a professor of systems biology at HMS.

Manalis' original cell-weighing system, known as a suspended microchannel resonator, pumps cells (in fluid) through a microchannel that runs across a tiny silicon cantilever. That cantilever vibrates within a vacuum. When a cell flows through the channel, the frequency of the cantilever's vibration changes, and the cell's buoyant mass can be calculated from that change in frequency.

For the new study, the researchers redesigned their system so that they could trap cells over a much longer period of time. The original system offered limited control over the motion of cells in the channel; cells could be lost or become unviable due to accrued shear stress from frequent passages through the microchannel. Consequently, growth could be monitored for less than 30 minutes.

To avoid this problem, the researchers developed a way to precisely control the flow in the system so that a cell could be stopped anywhere in the bypass channel. They also configured the flow to constantly replenish nutrients and remove waste. Now a cell passes through only every 60 seconds and remains viable for several generations.


The new system also measures fluorescent signals
from a cell in addition to its mass.
Cells are programmed to express fluorescent proteins
at various points in the cell cycle,
allowing the researchers to link
cell cycle information to growth.


A cell devotes itself to growth in a phase called G1. A critical transition occurs when the cell enters the S phase, during which DNA is replicated in preparation for division. The researchers found that growth rate increases rapidly during the G1 phase. This rate varies a great deal from cell to cell during G1, but converges as cells approach the S phase. Once cells complete the transition into S phase, growth rates diverge again.

Building on the feature of the new system that precisely controls the environmental conditions inside the channel, researchers can also change the conditions very rapidly, allowing them to monitor how cells respond to such disturbances.

Manalis: "We are now measuring the cell's response on short timescales to various perturbations, such as depleting a particular nutrient or adding a drug. We believe this could offer new types of information that could not be obtained from conventional proliferation assays."

Original article: http://web.mit.edu/newsoffice/2012/discovering-when-cells-divide-0806.html