Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

August 14, 2012--------News Archive Return to: News Alerts


University of Illinois chemists found that DNA can shape gold nanoparticle growth similarly
to the way it shapes protein synthesis,with different letters of the genetic code
producing gold circles, stars and hexagons.
Image: Li Huey Tan, Zidong Wang and Yi Lu

WHO Child Growth Charts

       

DNA Code Configures Gold Nanoparticles Into Stars, Circles and Hexagons

DNA can shape gold nanoparticle growth similarly to the way it shapes proteins, with different letters of the genetic code producing gold circles, stars and hexagons

DNA holds the genetic code for all sorts of biological molecules and traits. But University of Illinois researchers have found that DNA’s code can similarly shape metallic structures.


DNA segments can direct the shape of gold nanoparticles
– tiny gold crystals that have many applications
in medicine, electronics and catalysis.


Led by Yi Lu, Schenck Professor of Chemistry at U. of I., the team published its surprising findings in the journal Angewandte Chemie.

Lu: “DNA-encoded nanoparticle synthesis can provide us a facile but novel way to produce nanoparticles with predictable shape and properties. Such a discovery has potential impacts in bio-nanotechnology and applications in our everyday lives such as catalysis, sensing, imaging and medicine.”

Gold nanoparticles have wide applications in both biology and materials science thanks to their unique physicochemical properties. Properties of a gold nanoparticle are largely determined by its shape and size, so it is critical to be able to tailor the properties of a nanoparticle for a specific application.

“We wondered whether different combinations of DNA sequences could constitute ‘genetic codes’ to direct the nanomaterial synthesis in a way similar to their direction of protein synthesis,” said Zidong Wang, a recent graduate of Lu’s group and the first author of the paper.

Gold nanoparticles are made by sewing tiny gold seeds in a solution of gold salt. Particles grow as gold in the salt solution deposits onto the seeds. Lu’s group incubated the gold seeds with short segments of DNA before adding the salt solution, causing the particles to grow into various shapes determined by the genetic code of the DNA.


The DNA alphabet comprises four letters:
A, T, G and C.
The term genetic code refers to the sequence
of these letters, called bases.
The four bases and their combinations
can bind differently with facets of gold nanoseeds
and direct the nanoseeds’ growth pathways,
resulting in different shapes.


In their experiments, the researchers found that strands of repeating A’s produced rough, round gold particles; T’s, stars; C’s, round, flat discs; G’s, hexagons. Then the group tested DNA strands that were a combination of two bases, for example, 10 T’s and 20 A’s. They found that many of the bases compete with each other resulting in intermediate shapes, although A dominates over T.

Next, the researchers plan to investigate exactly how DNA codes direct nanoparticle growth. They also plan to apply their method to synthesize other types of nanomaterials with novel applications.

The National Science Foundation supported this work.

Lu also is affiliated with the Beckman Institute for Advanced Science and Technology and with the Frederick Seitz Materials Research Laboratory, both of which are at the U. of I.

Original article: http://news.illinois.edu/news/12/0808nanoparticles_YiLu.html