Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

August 20, 2012--------News Archive Return to: News Alerts

MRI scans of a human brain

BLUE are the regions significantly associated with decision-making,
RED the regions significantly associated with behavioral control.

LEFT an intact brain from the front — the colored regions both in the frontal lobes.
RIGHT is same brain with part of the frontal lobes cut to show lesion map of the interior.

[Credit: California Institute of Technology]

WHO Child Growth Charts

       

Thinking and Choosing in the Brain

The frontal lobes are the largest part of the human brain, and thought to be the part that expanded most during human evolution

California Institute of Technology (Caltech) researchers study over 300 brain lesion patients for damage to the frontal lobes—located just behind and above the eyes—which can result in profound impairments in higher-level reasoning and decision making.

By mapping the brain lesions of these patients, the team was able to show that reasoning and behavioral control are dependent on different regions of the frontal lobe than the areas called upon when making a decision.

Their findings are described online this week in the early edition of the Proceedings of the National Academy of Sciences (PNAS).

The team analyzed data that had been acquired over a 30-plus-year time span by scientists from the University of Iowa's department of neurology—which has the world's largest lesion patient registry. They used that data to map brain activity in nearly 350 people with damage, or lesions, in their frontal lobes. The records included data on the performances of each patient while doing certain cognitive tasks.

By examining these detailed files, the researchers were able to see exactly which parts of the frontal lobes are critical for tasks like behavioral control and decision making. The intuitive difference between these two types of processing is something we encounter in our lives all the time.


Behavioral control happens when you don't order
an unhealthy chocolate sundae you desire
and go running instead.

Decision making based on reward, on the other hand,
is more like trying to win the most money in Vegas—or
indeed choosing the chocolate sundae.


"These are really unique data that could not have been obtained anywhere else in the world," explains Jan Glascher, lead author of the study and a visiting associate in psychology at Caltech. "To address the question that we were interested in, we needed both a large number of patients with very well-measured lesions in the brain, and also a very thorough assessment of their reasoning and decision-making abilities across a battery of tasks."

That quantification of the lesions as well as the different task measurements came from several decades of work led by two coauthors on the study: Hanna Damasio, Dana Dornsife Chair in Neuroscience at the University of Southern California (USC); and Daniel Tranel, professor or neurology and psychology at the University of Iowa.

"The patterns of lesions that impair specific tasks showed a very clear separation between those regions of the frontal lobes necessary for controlling behavior, and those necessary for how we give value to choices and how we make decisions," says Tranel.

Ralph Adolphs, Bren Professor of Psychology and Neuroscience at Caltech and a coauthor of the study, says that aspects of what the team found had been observed previously using fMRI methods in healthy people. But, he adds, those previous studies only showed which parts of the brain are activated when people think or choose, but not which are the most critical areas, and which are less important.

"Only lesion mapping, like we did in the present study, can show you which parts of the brain are actually necessary for a particular task," he says. "This information is crucial, not only for basic cognitive neuroscience, but also for linking these findings to clinical relevance."

For example, several different parts of the brain might be activated when you are making a particular type of decision, explains Adolphs. If there is a lesion in one of these areas, the rest of your brain might be able to compensate, leaving little or no impairment. But if a lesion occurs in another area, you might wind up with a lifelong disability in decision making. Knowing which lesion leads to which outcome is something only this kind of detailed lesion study can provide, he says.

"That knowledge will be tremendously useful for prognosis after brain injury," says Adolphs. "Many people suffer injury to their frontal lobes—for instance, after a head injury during an automobile accident—but the precise pattern of the damage will determine their eventual impairment."

According to Tranel, the team is already working on their next project, which will use lesion mapping to look at how damage to particular brain regions can impact mood and personality. " There are so many other aspects of human behavior, cognition, and emotion to investigate here, that we've barely begun to scratch the surface," he says.

Other collaborators on the PNAS paper, "Lesion Mapping of Cognitive Control and Value-based Decision-making in the Prefrontal Cortex," were Lynn Paul, a senior research scientist at Caltech; David Rudrauf and Matt Calamia from the University of Iowa; and Antoine Bechara from USC. The study was supported by grants from the German Ministry of Research and Education, the National Institutes of Health, the Kiwanis Foundation, and the Gordon and Betty Moore Foundation.

Original article: https://media.caltech.edu/press_releases/13544