Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

August 22, 2012--------News Archive Return to: News Alerts


In Duane Syndrome, eye muscles contract and relax when they should not.

WHO Child Growth Charts

       

Research Identifies Mechanism Responsible for Eye Disorder - Duane Syndrome

The findings could provide the key to reversing the condition and unlocking the causes of movement disorders in other parts of the body

A research team from King's College London and the University of Exeter Medical School has identified how a genetic mutation acts during the development of nerves responsible for controlling eye muscles, resulting in movement disorders such as Duane Syndrome, a form of squint.

Duane Syndrome usually causes vision problems, but can be accompanied by malformations of the skeleton, eyes, ears, kidneys and nervous system - but more commonly occurs in isolation.

Most sufferers of the condition are diagnosed by the age of 10; it is more prevalent in women, and in the left eye. It is believed to affect around half a million people worldwide.

In Duane Syndrome, eye muscles contract and relax when they should not. It develops in the womb where it affects nerve growth to the eye. Sufferers of the syndrome have limited eye movement sideways towards the ear or nose. When the eye moves towards the nose the eyeball pulls into the socket, closing the eyelids and sometimes forcing the eye movement up or down.

The discovery could lead to therapies and a better understanding of how genetic mutations of the nervous system cause movement disorders in other parts of the body - with a long term view to encouraging the re-growth of damaged cells.

The research is published in Proceedings of the National Academy of Sciences.


As nerves develop in the womb
they respond to signals that tell them
in which direction to grow.

Some signals encourage them
to grow to a particular part of the body,
while other signals tell them to avoid certain areas.

When the system works as it should,
the right type of nerve grows to
the appropriate part of the body.


The surface of growing nerves includes identification receptors that respond to signals from secreted proteins. The protein mutated in Duane Syndrome acts as a switch that weighs up incoming signals from the receptors – in this way the nerve knows whether it must grow towards a part of the body or be repulsed away.


In conditions such as Duane Syndrome,
the signalling breaks down and the nerve
cells are unable to distinguish between
a signal of attraction or repulsion.

As a result, the nerves that control eye movements
grow to the wrong muscles causing limited
or complete loss of eye movement.

If not corrected surgically,
this can lead to partial blindness in later life.


This recent research has provided new insights into how this 'switch signal' system works and how it has failed in cases of Duane Syndrome, causing the 'wiring up' of the wrong muscle or 'overshooting' of nerve development past the correct muscle.

The findings are likely to lead to further study which will identify how the 'switch signal' mechanism could be harnessed to selectively change nerve cell development behaviour, how the protein could be targeted to encourage damaged cells to re-grow, and how the 'switch' could be manipulated to reverse damage.

Dr. John Chilton, senior lecturer at the University of Exeter Medical School, commented: "We have focused our research on eye movements and conditions such as Duane Syndrome because it is a relatively simple anatomical system – six muscles controlled by three nerves - and there is not much cross over with other nerves in the developing head. Our findings are exciting for two reasons: the first is that they provide real hope for the development of therapies that could reverse eye movement disorders; the second is that, with additional research, they could be applied to other, more complex nerve and muscle groups that control, say, legs or arms. The scope could be phenomenal."

Sarah Guthrie, Professor of Developmental Neurobiology at King's College London said: "Investigating the signalling pathways that regulate alpha2-chimaerin helps us to understand defects in the cranial nerves which lead to eye movement disorders and visual problems. The results of this early study are very exciting, and could have an impact on the approach to treating eye movement disorders and other nerve wiring defects in the future."

Original article: http://www.eurekalert.org/pub_releases/2012-08/tpco-rim082112.php