Welcome to The Visible Embryo
The Visible Embryo Birth Spiral Navigation
Fetal Timeline--- -Maternal Timeline-----News-----Prescription Drugs in Pregnancy---- Pregnancy Calculator----Female Reproductive System

WHO International Clinical Trials Registry Platform

The World Health Organization (WHO) has a Web site to help researchers, doctors and patients obtain information on clinical trials.

Now you can search all such registers to identify clinical trial research around the world!




Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System


Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.

Content protected under a Creative Commons License.
No dirivative works may be made or used for commercial purposes.


Pregnancy Timeline by SemestersDevelopmental TimelineFertilizationFirst TrimesterSecond TrimesterThird TrimesterFirst Thin Layer of Skin AppearsEnd of Embryonic PeriodEnd of Embryonic PeriodFemale Reproductive SystemBeginning Cerebral HemispheresA Four Chambered HeartFirst Detectable Brain WavesThe Appearance of SomitesBasic Brain Structure in PlaceHeartbeat can be detectedHeartbeat can be detectedFinger and toe prints appearFinger and toe prints appearFetal sexual organs visibleBrown fat surrounds lymphatic systemBone marrow starts making blood cellsBone marrow starts making blood cellsInner Ear Bones HardenSensory brain waves begin to activateSensory brain waves begin to activateFetal liver is producing blood cellsBrain convolutions beginBrain convolutions beginImmune system beginningWhite fat begins to be madeHead may position into pelvisWhite fat begins to be madePeriod of rapid brain growthFull TermHead may position into pelvisImmune system beginningLungs begin to produce surfactant
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development

Developmental biology - Genes

3D Map of Genes in the Cell

A gene's position in the cell may affect its performance...

It has been almost 20 years since the human genome was first sequenced, but researchers still know little about how genes are folded up and organized within cells. In a paper published August 28 in the Journal of Cell Biology, researchers from the University of Illinois at Urbana-Champaign describe a new technique that can measure the position of every single gene in the nucleus and build a 3D picture of the genome's organization.
The location of a gene, whether close to the edge or the center of a nucleus, may have significant effect on its activity. A gene's position may therefore change as a cell develops or becomes diseased. Researchers can examine the position of individual genes using a microscope, but determining the position of each gene at the same time is impossible.

Yu Chen, Andrew Belmont, and colleagues from the University of Illinois at Urbana-Champaign have now developed a technique called tyramide signal amplification sequencing (TSA-Seq) that allows the distance of every gene from specific nuclear landmarks to be measured simultaneously. The study was carried out in collaboration with Jian Ma's group at Carnegie Mellon University and with researchers at the Netherlands Cancer Institute and Northwestern University Feinberg School of Medicine.

The TSA-Seq technique involves targeting the enzyme, horseradish peroxidase, to specific nuclear structures such as the nuclear lamina surrounding the nucleus or protein-containing granules called 'nuclear speckles' that tend to be found in the center of the nucleus. The horseradish peroxidase then generates a highly reactive molecule called tyramide that can be used to label any DNA in the enzyme's vicinity. The closer a gene is to the enzyme, the more it will be labeled. So, when researchers subsequently sequence the cells' DNA, they can calculate how close each gene was to the nuclear structure tagged with horseradish peroxidase.
"TSA-Seq is the first genome-wide method capable of estimating actual distances of genes from particular nuclear subcompartments."

Yu Chen PhD, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Chen and colleagues tested their approach in leukemia cells and found that genes closer to nuclear speckles tended to be more active than genes closer to the nuclear lamina. Indeed, by examining the position of neighboring genes, the researchers were able to trace whole sections of chromosomes that looped out from the nuclear periphery toward speckles in the center of the nucleus. The function of nuclear speckles is unknown, but the regions of chromosomes close to speckles seem to be "hot zones" of gene activity. Thus, sequencing DNA can produce a map of the genome's organization.
"Our model would suggest that chromosome movements of just a few hundred nanometers could have substantial functional significance."

Andrew S. Belmont PhD, Department of Cell and Developmental Biology; Center for Biophysics and Quantitative Biology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Researchers know the technique still needs work, but hope to use TSA-Seq to map gene positions in other cell types and examine how positions change as cells develop or become diseased.

While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a “cytological ruler” for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription “hot zones.” Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.

Authors: Yu Chen, Yang Zhang, Yuchuan Wang, Liguo Zhang, Eva K. Brinkman, Stephen A. Adam, Robert Goldman, Bas van Steensel, Jian Ma, and Andrew S. Belmont.

The authors declare no competing financial interests.

Sequencing was done at the UIUC Biotechnology Center. We thank William Brieher, Lisa Stubbs, and Brian Freeman (UIUC, Urbana, IL) for helpful suggestions during the course of this research. We also thank Jiang Xu (University of Southern California, Los Angeles, CA) for reading our manuscript and providing helpful suggestions for revisions.

This work was supported by National Institutes of Health grant R01 GM58460 to A.S. Belmont, R01 HG007352 to J. Ma, and U54 DK107965 to A.S. Belmont, J. Ma, and B. van Steensel as well as a Netherlands Organization for Scientific Research ZonMW-TOP grant to B. van Steensel.

Return to top of page

Aug 29, 2018   Fetal Timeline   Maternal Timeline   News   News Archive

Horseradish peroxidase adheres to nuclear speckles (GREEN) producing a diffuse cloud of tyramide containing molecules (RED) that label nearby DNA (BLUE). A small shift in a gene's position so that it lies close to a nuclear speckle could be sufficient to dramatically enhance that gene's activity.
Image credit: Chen et al., 2018.

Phospholid by Wikipedia