Welcome to The Visible Embryo
The Visible Embryo Birth Spiral Navigation
Fetal Timeline--- -Maternal Timeline-----News-----Prescription Drugs in Pregnancy---- Pregnancy Calculator----Female Reproductive System

WHO International Clinical Trials Registry Platform

The World Health Organization (WHO) has a Web site to help researchers, doctors and patients obtain information on clinical trials.

Now you can search all such registers to identify clinical trial research around the world!




Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System


Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.

Content protected under a Creative Commons License.
No dirivative works may be made or used for commercial purposes.


Pregnancy Timeline by SemestersDevelopmental TimelineFertilizationFirst TrimesterSecond TrimesterThird TrimesterFirst Thin Layer of Skin AppearsEnd of Embryonic PeriodEnd of Embryonic PeriodFemale Reproductive SystemBeginning Cerebral HemispheresA Four Chambered HeartFirst Detectable Brain WavesThe Appearance of SomitesBasic Brain Structure in PlaceHeartbeat can be detectedHeartbeat can be detectedFinger and toe prints appearFinger and toe prints appearFetal sexual organs visibleBrown fat surrounds lymphatic systemBone marrow starts making blood cellsBone marrow starts making blood cellsInner Ear Bones HardenSensory brain waves begin to activateSensory brain waves begin to activateFetal liver is producing blood cellsBrain convolutions beginBrain convolutions beginImmune system beginningWhite fat begins to be madeHead may position into pelvisWhite fat begins to be madePeriod of rapid brain growthFull TermHead may position into pelvisImmune system beginningLungs begin to produce surfactant
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development

Developmental Biology - Epigenetic Changes

Does Mom's Age Cause Epigenetic Change in Her Eggs?

Babies born through fertility treatments have a higher risk of inheriting epigenetic disorders...

According to a new mouse study from the Magee-Womens Research Institute (MWRI), the problem likely lies with the technology, not mother's age.

The study, published in Clinical Epigenetics, found that fertility treatments caused epigenetic changes associated with Beckwith-Wiedemann, Silver-Russell and Angelman syndromes in mouse embryos. Surprisingly, maternal age itself had no effect.
"Women of advanced maternal age have one less thing to worry about. We need clinical studies to back that up, but this is a promising animal model that clinical studies could be based on."

Audrey Kindsfather, medical student researcher at Magee-Womens Research Institute (MWRI) and lead author.

Women are increasingly delaying childbirth, and as a woman ages, so does her reproductive system. The odds of conception go down, while the odds of genetic disorders, such as Down syndrome, go up.

Maternal age might increase the odds of epigenetic disorders too, the researchers reasoned. This could explain the higher incidence of these rare diseases among children born through fertility treatments, as women using these technologies tend to be older. To dissociate these factors, the scientists turned to mice.

Kindsfather and colleagues grouped female mice by age, ranging from adolescence to the mouse equivalent of a 45-year-old woman. Some of the mice in each age group had hormone injections to kick ovulation into high gear or their embryos cultured in a Petri dish - procedures commonly involved in fertility treatments - while control mice conceived naturally.

Researchers then quantified epigenetic changes in the mouse mothers' embryos by measuring the amount of DNA methylation - the molecular locks that are clasped around genes and associated with epigenetic disorders, preventing them from being expressed/functioningHormone therapy and embryo culture both disrupted DNA methylation in these critical spots. When these two procedures were used in combination, the effects were even stronger.

Maternal age, on the other hand, had no impact on DNA methylation patterns around these genes.
"It wasn't what we were expecting. We know that as a woman ages, there are a lot of molecular changes happening to her eggs, so we thought these changes could lead to abnormal DNA methylation. We were quite surprised that it didn't."

Mellissa Mann PhD, Principal Investigator with MWRI, and Associate Professor of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pennsylvania, USA and senior author.

Fertility treatments have come a long way since the first "test-tube baby" was born over 40 years ago, but this study highlights that there's still room for improvement.

"These are wonderful technologies, but not the same as spontaneously conceiving," says Kindsfather. "Lots more research needs to be done to improve fertility treatments."

Background Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders.

Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors.

Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.

Audrey J. Kindsfather, Megan A. Czekalski, Catherine A. Pressimone, Margaret P. Erisman and Mellissa R. W. Mann.

This work was supported by PA DOH 2018 Health Research Formula Fund, Magee-Womens Research Institute and the University of Pittsburgh to MRWM, and the Howard Hughes Medical Institute Medical Fellows Research Program to AJK.

Return to top of page.

Dec 3 2019   Fetal Timeline   Maternal Timeline   News 

After fertilization, cells within a newly-formed mouse embryo divide and multiply. The cells
all have the same DNA, but gene expression patterns diverge as they start to take on different
roles. Once there are a few dozen cells, a fluid-filled cavity appears in the center of the embryo.
Cells on the surface will become the placenta and the clump of cells nestled to one side will
become the fetus. With epigenetic disorders, the gene expression instructions aren't passed
down or maintained properly. In Beckwith-Wiedemann syndrome, for example, the loss of
epigenetic marks causes an overgrowth of the placenta and certain parts of the fetus.
CREDIT Audrey Kindsfather.

Phospholid by Wikipedia