Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
September 16, 2011--------News Archive

Preschoolers' Math Performance Predicts Later Skill
Study reveals how early number sense and elementary math scores are related.

Estrogen Reverses Severe Pulmonary Hypertension
Pulmonary hypertension is a rare and serious condition that affects 2 to 3 million individuals in the U.S., mostly women, and can lead to heart failure.

September 15, 2011--------News Archive

Protein In Heart Target for Colon Cancer Therapies
A protein critical in heart development may also play a part in colon cancer progression.

Defining Hereditary Deafness
The precise diagnosis of disease and developmental syndromes often depends on understanding the specific genetics underlying each.

Engineers Probe Mechanics Behind Progeria
Pulling the tail of mutated protein could help illuminate problems with it's misfolding.

September 14, 2011--------News Archive

A Vaccine for TB?
A potential vaccine against tuberculosis has been found to completely eliminate tuberculosis bacteria from infected tissues in some mice.

Controlling Stem Cell's Form Can Determine Its Fate
The scaffolding on which stem cell cultures are grown has more influence on the new shape and function of those cells than ever expected.

September 13, 2011--------News Archive

Improving Women and Children's Health Worldwide
For less than $100, poor, pregnant women in India can give birth in a private hospital for low-income families, comparable in quality to expensive, private ones.

Found: Gene for 3 Child Neurodegenerative Diseases
Leukodystrophies are inherited disorders affecting the white matter of the brain and abnormally interferring with nerve impulses transmitted through axon cells.

Fast-Paced, Fantasy TV Affects Learning In Children
Young children who watch fast-paced, fantastical television shows may become handicapped in their readiness for learning.

September 12, 2011--------News Archive

Common Gene Associated With Aortic Dissection
Multi-institutional study reveals a genetic risk factor that doubles a person's chance of developing this silent killer.

Critical Similarity Between Two Stem Cell Types
Natural stem cells and laboratory induced stem cells (IPCs) create the same proteins.

WHO Child Growth Charts



Chest X-Ray showing aortic dissection type Stanford A. Image credit: Wikimedia





Richard Holbrooke, John Ritter, Lucille Ball, Jonathan Larson and Great Britain's King George II were all taken by the same silent killer: an acute aortic dissection.

Now scientists, led by researchers at The University of Texas Health Science Center at Houston (UTHealth) and Baylor College of Medicine (BCM), have found a common genetic variable in those people predisposed to aortic dissections which can approximately double a person's chances of having the disorder.

An aortic aneurysm is an enlargement or ballooning of the aorta in the segment where it exits the heart (thoracic aortic aneurysm).

The natural history of a thoracic aortic aneurysm is to enlarge over time without symptoms, leading to instability of the aorta and ultimately an acute dissection - or tear in the aorta that allows blood to flow within its layers. It is a life-threatening event, with up to 40 percent of patients dying suddenly.

Although the average age of a person suffering an aortic dissection is in their early 60s, the disease can strike at anytime. Since the majority of individuals have an aortic aneurysm prior to dissection, identification of an aneurysm is critical as it can be surgically repaired preventing an aortic dissection, (typically dissection occurrs when the diameter of the aneurysm reaches twice normal).

"This is the first time we've found an association with a common genetic variant in the population that predisposes people to thoracic aortic aneurysms that cause acute aortic dissections. This variant in the DNA is on chromosome 15 (15q21.1) and involves a gene called FBN1. We already know that mutations in this gene cause Marfan syndrome, which is a genetic syndrome that strongly predisposes individuals to aortic dissections but also causes people to grow tall and have weak eyes," said Dianna M. Milewicz, M.D., Ph.D., professor and the President George H.W. Bush Chair in Cardiovascular Research at The University of Texas Medical School at Houston.

"Although patients with aortic dissection in our study did not have Marfan syndrome, this study suggests that the same pathways are involved in causing aortic dissections in patients with and without Marfan syndrome."

Milewicz said the research has implications for using drugs, such as losartan, to treat patients to prevent aortic aneurysms from even forming. Losartan is now being tested in clinical trials for people with Marfan syndrome.

"Whether they have Marfan or the common variant in FBN1, it may be the same pathway and we may be able to treat these patients the same way. That means that what we learn in treating patients with Marfan syndrome has implications for this larger group of individuals with thoracic aortic disease," says Milewicz.

"Over the past two decades, there has been remarkable progress in understanding the causes of aortic aneurysms and dissections in patients with inherited disorders, particularly Marfan syndrome. However, up to 80 percent of patients with thoracic aortic aneurysms and dissections do not have a known inherited cause, and the genetic factors that impact susceptibility to aortic disease in these patients are poorly understood," said first author Scott A. LeMaire, M.D., professor of surgery and director of research in the Division of Cardiothoracic Surgery at BCM and surgeon at the Texas Heart Institute at St. Luke's Episcopal Hospital.

"This gap in our understanding of 'sporadic' disease motivated us to conduct this study, which would not have been possible without the tremendous efforts of a large team of dedicated collaborators."

The study examined more than 1,300 patients with sporadic thoracic aortic disease, meaning without a known family genetic history or genetic syndrome associated with the disorder.

Patients came from the Memorial Hermann Heart & Vascular Institute, the Texas Heart Institute and Harvard Medical School, as well as from the National Institutes of Health GenTAC program, which includes the Perelman School of Medicine at the University of Pennsylvania, Johns Hopkins University School of Medicine, Weill Cornell Medical College of Cornell University and Oregon Health and Science University.

The discovery was made possible by a grant from the NIH that funded the Specialized Center for Clinically Oriented Research in Aortic Diseases, a multi-institutional collaboration in the Texas Medical Center. The title of the article is "Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1." Merry-Lynn N. McDonald, Ph.D., at BCM; and Dong-chuan Guo, Ph.D., assistant professor of internal medicine at UTHealth, contributed equally along with LeMaire as co-first authors on the article.

The results of the research are published in the Sept. 11, 2011 advance online issue of Nature Genetics. Senior author is Dianna M. Milewicz, M.D., Ph.D., professor and the President George H.W. Bush Chair in Cardiovascular Research at The University of Texas Medical School at Houston, part of UTHealth.

Other UTHealth co-authors include Charles C. Miller, III, Ph.D., professor of cardiothoracic and vascular surgery; Ralph J. Johnson, Ph.D., assistant professor of internal medicine; Hazim Safi, M.D., professor and chair of the Department of Cardiothoracic and Vascular Surgery; and Anthony L. Estrera, M.D., professor of cardiothoracic and vascular surgery.

BCM co-investigators include Suzanne M. Leal, Ph.D., professor of molecular and human genetics; John W. Belmont, M.D., Ph.D., professor of molecular and human genetics; Ludivine Russell, M.S., cardiothoracic surgery research coordinator; Mir Reza Bekheirnia, M.D., clinical fellow in the Department of Molecular and Human Genetics; Luis M. Franco, M.D., assistant professor of molecular and human genetics; Mary Nguyen, B.S., cardiothoracic surgery laboratory technician; Molly Bray, Ph.D., associate professor of pediatrics; and Joseph S. Coselli, M.D., professor and chief of the Division of Cardiothoracic Surgery. Harvard Medical School co-investigators are Simon C. Body, M.B., Ch.B., M.P.H., associate professor of anesthesia; Christine Seidman, M.D., professor of genetics and medicine; Jonathan G. Seidman, Ph.D., professor of genetics; and Eric M. Isselbacher, M.D., associate professor medicine.

Other co-investigators are Reed E. Pyeritz, M.D., Ph.D., Perelman School of Medicine at the University of Pennsylvania; Joseph E. Bavaria, M.D., Perelman School of Medicine at the University of Pennsylvania; Richard Devereux, M.D., Weill Cornell Medical College; Cheryl Maslen, Ph.D., Oregon Health and Science University; Kathryn W. Holmes, Johns Hopkins University School of Medicine, M.D., M.P.H; and Kim Eagle, M.D., University of Michigan Medical School.

Original article: http://www.eurekalert.org/pub_releases/2011-09/uoth-ubr090911.php